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Abstract   
We consider a model of elliptical stationary accretion discs developed by 

Lyubarskij et al. [4], which have derived a second order ordinary differential equation, 
describing the spatial structure of these objects. This dynamical equation contains seven 
integrals, arising from the azimuthal averaging along the elliptical disc particle orbits. 
They are functions on the unknown eccentricity distribution e(u), its derivative ė(u) ≡ 
de(u)/du and the power n in the viscosity low η = β Σ n, where u ≡ ln p, p is the focal 
parameter of  the concrete elliptical particle orbit. In the present paper, we derive linear 
relations between these unknown integrals, which may be useful to eliminate three of these 
quantities. It is also possible to eliminate even one more integral, but proving of this 
statement will be postponed in a forthcoming paper. The considered approach is 
maintained with a view to split the dynamical equation into a system of more simple 
differential equations.   
 
 

1. Introduction 
   

The accretion phenomena have many impacts on the structure and 
evolution of large variety of astrophysical objects. Such processes may 
include both spherical accretion and/or accretion via discs. In the later case, 
the disc accretion mechanism is caused by the large angular momentum of 
the material, surrounding the compact body, and falling onto it as a final 
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result. In the present investigation we shall concentrate our attention over 
accreting compact objects having stellar masses. As a general rule, the 
matter, composing the accretion flow, is supplied by another star (the so-
called donor star), orbiting around the accreting compact component of the 
binary stellar system. In some cases, the material of the disc may be 
available due to a disruption by the tidal forces of a very close orbiting 
body. But in spite of this possible (in some sense, more “exotic”) situation, 
the mass of the accretion disc will disappear very soon because of the 
exhausting processes. These may be accumulation of mass over the surface 
of central star, jets and winds from the two surfaces of the disc (like the 
stellar winds in ordinary stars) or any other outflows removing the matter 
from the vicinity of the disc. Consequently, we would expect that such 
accretion discs may be treated as stationary objects for a time scales shorter 
than the corresponding time intervals for the discs existing in the close 
binary systems.  

It is well known that the balance between the heating and cooling 
processes strongly determines the spatial structure and the time evolution of 
the accretion flows. A great variety of accretion disc models illustrates that 
the motions of the disc particles may essentially differ from the Keplerian 
one. This circumstance is able to change the flow so considerably, that in 
some parts of the disc the radial motion of matter is not inward (accretion), 
but is directed outward (excretion). This is the case for hot, advection-
dominated accretion flows, which are usually optically thin in the radial 
direction. Therefore, the photons, produced at given radii, can travel long 
distances without being absorbed. Compton scattering of these photons 
heats or cools electrons at other radii of the considered accretion disc model. 
It may turn out to be, that at a certain radius, the Compton cooling rate is 
larger than the local viscous heating rate, i.e. the cooling effect is important 
in this situation. As pointed out by Yuan et al. [1], it is possible to obtain a 
self-consistent solution for the activity of an accretion disc around a black 
hole only when the luminosity of the disc L is less than 0,01 LEddington . 
Above this critical accretion rate, the equilibrium temperature of the 
electrons at the outer radius of the disc rout is higher than the virial 
temperature, due to the strong Compton heating. As a result, the accretion is 
suppressed. Consequently, in this model, the activity of the black hole (more 
precisely, of its accretion flow) is expected to oscillate between an active 
and an inactive phase. The oscillations have time scales of the radiative time 
scale gas order at the outer radius rout .  
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Another problem, associated with the description of the accretion disc 
structure around the black holes, is the following. The inner edges of these 
discs may have variable properties, if the matter inside the marginally stable 
orbit is magnetically connected to the disc. Then a non-zero torque is 
exerted on the inner disc edge and the accretion efficiency can be much 
higher than in the standard accretion disc model of Shakura & Sunyaev [2]. 
In the later case, this quantity is supposed to be equal to zero. The non-zero 
torque implies that, in the case of variable torque, transitions of the flow 
between different accretion types may be triggered [3]. 

In the present paper, we consider the problems related to the attempts to 
solve analytically the dynamical equation, governing the structure of 
elliptical accretion discs, rotating around a stellar mass objects. More 
specifically, we are dealing with the model of Lyubarskij et al. [4], which is 
a generalization of the work of Shakura & Sunyaev [2] to the case of 
elliptical accretion discs with orbits sharing a common longitude of the 
periastron. A very important property of the models [2] and [4] is that the 
trajectories of the disc particles are Keplerian ones. Consequently, our 
further conclusions cannot be applied to the above mentioned situations [1] 
and [3], i.e. our considerations shall avoid the cases of discs around black 
holes, and, especially, the disc regions too close to the central star. Such a 
limitation enables us also to escape the complications, related to the 
necessity to use general relativity for the description of disc dynamics. But 
these are not the only troubles, concerning the realistic treatment of the 
accretion flows by means of the Lyubarskij et al. model [4]. For example, 
angular momentum transport within young massive protoplanetary discs 
may be dominated by the self-gravity at the radii, where the disc is too 
weakly ionized to allow the development of the magnetorotational 
instability [5]. One important way to overcome the different problems, 
occurred in the theory of accretion discs, is to develop computer codes in 
order to perform numerical simulations of the processes in the accretion 
flows. Of course, such an approach may be applied for time-sequences of 
solutions, giving the evolution of the investigated objects. The difficulties, 
which arise in these searches, are very often caused by the vast volume of 
the needed computer capabilities. Numerical simulations of radiative 
processes in magnetized hot accretion discs (like these around black holes) 
are complicated, because the energy distributions of the particles and the 
photons span many orders of magnitude. The distributions may strongly 
depend on each other. Also, the radiative interactions behave significantly 
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differently, depending on the energy regime. Many complications in the 
computational procedures are due to the enormous difference in the time-
scales of the processes [6].  

There are many observational evidences that the accretion discs have 
complex spatial structure. Photometric and spectral studies in the near 
infrared region of the electromagnetic spectrum have led to the 
identification of a new class of accretion discs, whose members have an 
inner optically thick part, separated from an outer also optically thick part by 
an optically thin gap. This is in contrast to the discs that have inner disc 
holes. The authors of the paper [7] Espaillat et al. take for granted that the 
excess of the near infrared emission above the photosphere of the star LkCa 
15 is a blackbody continuum, that can only be due to the optically thick 
material in an inner disc around the star. If this result is combined with the 
estimation of the radius of the inner edge of the outer disc, it reveals a 
gapped structure of the accretion disc. Espaillat et al. assume that the most 
likely mechanism for clearing the detected gap in the evolving disc of the 
star LkCa 15 is the forming of planets.  

Returning to the theme of numerical simulations of the accretion flows, 
it is worthy to note that the two-dimensional hydrodynamical discs are 
nonlinearly unstable to the formation of vortices. Once formed, these 
vortices survive forever. But in three dimensions, numerical experiments 
show that only vortices in short boxes form and survive just as in two 
dimensions. The vortices in tall boxes are unstable and are destroyed. As 
pointed out by Lithwick [8], the unstable vortices decay into transient 
turbulent-like states, that transport angular momentum outward at a nearly 
constant rate for hundreds of orbital times. In the paper [8] was derived the 
criterion for the vortices to survive in three dimensions as they do in two 
dimensions. Namely, the azimuthal extend of the considered vortex must be 
larger than the local scale height of the accretion disc. When this condition 
is violated, the vortex is unstable and decays. Lithwick [8] concludes that a 
vortex with a given radial extend will survive in a three-dimensional disc if 
it is sufficiently weak (vortices are longer in azimuthal than in radial 
extend). The weak vortices behave two-dimensionally even if their width is 
much less than their height, because they are stabilized by rotation and 
behave as Taylor-Proudman columns [8]. It is also important to underline 
that the decaying of strong vortices might be responsible for the outward 
transport of angular momentum – a condition that is required for accretion 
discs to accrete. Obviously, the two-dimensional analytical model of 
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Lyubarskij et al. [4], in which the dynamical equation is a subject of our 
further considerations, does not include the vortices phenomena at all. That 
is why, this limitation must be kept in mind when the compatibility of this 
model to the real accretion discs is discussed. Nevertheless, we hope that at 
least some of its characteristics are realistic description of the elliptical discs 
in the nature and there is a reason to seek for analytical solutions of this 
model [4]. It must be stressed that the accretion disc theory itself contains 
certain unresolved problems and ambiguities. In particular, turbulent 
viscosity is frequently used in this theory to replace the microphysical 
viscosity in order to accommodate the observational need in discs, that leads 
to enhanced transport of energy and angular momentum. In paper [9] it is 
shown that the mean-field approach leads not to one, but to two transport 
coefficients that govern the mass and angular momentum transport. The 
authors of the above investigation conclude that the conventional approach 
suffers from an inconsistent neglect of the turbulent diffusion in the surface 
density equation. They constrain these two new transport coefficients for the 
specific cases of inward, outward and zero net mass transport. Hubbard and 
Blackman also find that one of the new transport terms can lead to 
oscillations in the mean surface density, which then requires a constant or 
small inverse Rossby numbers for accretion discs, to maintain a monotonic 
power-law density [9].  

The above sketched difficulties and also many other complex problems 
of the accretion flows theory (cited in the references of the listed below 
papers), unambiguously imply that we must consider models with 
reasonable simplifications. What assumptions we shall made depends, of 
course, on the accretion disc features, which we want to describe. In a series 
of papers [10], [11] and [12], we have investigated stationary accretion 
discs with elliptical shape under the assumed viscosity law η = β Σ n, where 
η is the viscosity coefficient, Σ is the surface density of the disc and β is a 
constant. The ellipticity is the dominant property, which is assumed to 
characterize all the considered cases. The power n is chosen to be a free 
parameter, which physically reasonable values lie in the range from about –
1 to about +3. The cases when n is an integer are already treated in the 
papers [11] and [13], where the dynamical equation is expressed in an 
analytical form. In what follows, we shall attempt to simplify this equation 
for noninteger powers n. This division of the values of the parameter n into 
integer/noninteger meanings has purely mathematical origin, due to our 
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ability to solve analytically some integrals, entering into the dynamical 
equation. It has not physical foundations. 
 

2. Dynamical equation for the elliptical accretion disc model 
 

For brevity, we shall not write here in an explicit form the dynamical 
equation, governing the structure of the stationary elliptical discs with orbits 
sharing a common longitude of periastron. We only note that this matter is 
already studied and discussed in earlier papers [4], [10], [11], [12] and [13], 
and we refer the reader to these investigations. We shall remind only some 
definitions and assumptions, made in these publications, in order to be 
enough clear in the further exposition. We use the notations p and u ≡ ln p 
for the focal parameter of each particle trajectory and its logarithm, 
respectively. We shall consider the power n in the viscosity law η = β Σ n as 
a constant parameter for each concrete considered model. This assumption 
means that n is the same constant throughout the disc, i.e. its derivative with 
respect to p (or u ≡ ln p) is equal to zero. We also assume that n may be 
either integer or noninteger, ranging between ≈ –1 and ≈ +3, depending on 
the considered accretion disc model (but remaining as a constant in the 
framework of the model!). By e ≡ e(u) we denote the eccentricity of the 
elliptical orbit of the particle, and by ė ≡ ė(u) ≡ de/du ≡ de/dln p we 
understand the corresponding ordinary derivative. As it is already proved in 
[13], the dynamical equation, governing the structure of the accretion flow, 
is a second order homogeneous ordinary differential equation. 
Consequently, our problem is to simplify the coefficients, entering as 
multipliers into the two terms containing ë(u) and ė(u) separately. In the 
paper [13] it is suggested that the procedure of the simplification may 
probably involve finding of linear relations between the following seven 
integrals I0-, I0+, I0, I1, I2, I3 and I4 :   
                                                  2 π       

(1)        I0-(e,ė,n) ≡ ∫(1 + ecosφ) n – 3[1 + (e – ė)cosφ] – (n + 1) dφ ,  
                                                   0                 

                                                   2 π         
(2)        I0+(e,ė,n) ≡ ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ ,   
                                                    0        

   
                                              2 π          

(3)        Ij(e,ė,n) ≡ ∫(cosφ)j(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ ;  j = 0, 1, 2, 3, 4,   
                                                  0      

where φ is the azimuthal angle over which the averaging is performed ([4], 
[10]). Using the above notations, we can write the dynamical equation of the 
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elliptical disc in the following form ([10], [13]):   
 

(4)        Σ Aik(e,ė,n) Ii(e,ė,n) Ik(e,ė,n) ë + Σ Blm(e,ė,n) Il(e,ė,n) Im(e,ė,n) ė = 0 ,  
i,k                                                              l,m 

where the indices i, k, l and m independently take meanings 0-, 0+, 0, 1, 2, 3 
and 4. Our base line in the present paper is to obtain linear relations 
between the integrals Ii(e,ė,n), (i = 0-, 0+, 0, 1, 2, 3, 4), which will allow us 
to reduce the number of these integrals in the homogeneous ordinary 
differential equation (4). As already mentioned in [13], this is another 
approach to perform simplifications of the considered dynamical equation 
(4). In the forthcoming calculations we suppose at first that, by hypothesis, 
n, n – 1 and n – 2 are not equal to zero. Consequently, if these quantities 
appear as factors in the denominators of the derived intermediate and final 
expressions, they (by themself) cannot cause divergences of the results. 
After that, we include considerations of these particular cases, in order to 
ensure the completeness of the task solution. In the next paragraph we shall 
deduce expressions which will enable us to eliminate three of the above 
seven integrals, namely: I4, I2 and I1. In following papers, we shall also 
remove the integral I0 and shall discuss the linear independence of the 
remaining three integrals I3, I0- and I0+. We stress that all the integrals are 
considered to be functions on e(u), ė(u) and n. The later quantity n has the 
same value for the entire area of the elliptical accretion disc, i.e. n does not 
depend on the focal parameter p (u ≡ ln p). Of course, for other concrete 
models n may have different (but also constant) values. As a final result, the 
integrals Ii(e,ė,n) (i = 0-, 0+, 0, 1, 2, 3, 4) will depend on u, but in the 
following calculations we shall consider e and ė as independent variables, 
having however in mind, that ė(u) ≡ de(u)/du. The later circumstance must 
be taken into account when a differentiation of the integrals (1) – (3) should 
be performed. 
 

3. Linear relations between integrals 
 

During the next calculations we shall use the well-known trivial relation 
cos2φ + sin2φ = 1 (or, equivalently: cos2φ = 1 – sin2φ), valid for all 0 ≤ φ ≤ 
2π. We also remember, that according to the original work of Lyubarskij et 
al. [4], we must limit our investigation to the cases when not only |e(u)| < 1, 
but also the conditions |ė(u)| < 1 and |e(u) – ė(u)| < 1 are fulfilled (see the 
denominators of the expressions in Appendix A of [4]). Such restrictions 
probably preserve us from the much more complicated situation, when 
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shock waves induced/generated by the singularities must be taken into 
account in the considered accretion disc model. 

 
3.1. Elimination of the integral I4(e,ė,n) 
 

According to the definition (3), we have that:  
                                                 2 π      

(5)        I4(e,ė,n) ≡ ∫(cosφ)4 (1 + ecosφ)n – 2[1 + (e – ė)cosφ] – (n + 1) dφ =  
                                                  0      
                                    2 π  

               = e – 1∫cos3φ[(1 + ecosφ) – 1](1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ =  
                                     0         
                               

2 π  
               = e – 1∫ cos3φ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) dφ –  
                                     0      

                                   2 π 

               – e – 1∫ cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ .     
                                    0      
The second integral is equal to I3(e,ė,n) (see definition (3)). Applying the 
relation cos2φ = 1 – sin2φ, we obtain:  
                                                                                                2 π      
(6)        I4(e,ė,n) = – e – 1 I3(e,ė,n) + e – 1∫cosφ(1 – sin2φ)(1 + ecosφ) n – 1 ×  
                                                                                                 0        
                                                                                                                                                 2 π

       
           × [1 + (e – ė)cosφ] – (n + 1) dφ = – e – 1 I3(e,ė,n) + e – 1∫cosφ(1 + ecosφ) n – 1 ×  
                                                                                                                                                  0        
                                                                                                                            2 π     
              × [1 + (e – ė)cosφ] – (n + 1) dφ + [e(e – ė)] – 1∫cosφ sinφ(1 + ecosφ) n – 1 ×  
                                                                                  0      
              × [1 + (e – ė)cosφ] – (n + 1) d[1 + (e – ė)cosφ] .   
The second integral in (6) can be immediately expressed through the 
integrals I1(e,ė,n) and I2(e,ė,n), again using the definitions (3):   
                      2 π    

(7)        ∫cosφ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) dφ = I1(e,ė,n) + eI2(e,ė,n) .   
                       0      
In deriving of the third summand in the relation (6), we have used that the 
difference (e – ė) does not depend on the azimuthal angle φ. Consequently:  
                                                                                                                                                                                 2 π 

(8)        I4(e,ė,n) = e – 1I1(e,ė,n) + I2(e,ė,n) – e – 1I3(e,ė,n) – [ne(e – ė)] – 1∫cosφ sinφ ×  
                                                                                                                                                                                  0        
               × (1 + ecosφ) n – 1 d{ [1 + (e – ė)cosφ] – n } .         
Let us consider now the forth term in the above equality. Integrating by 
parts, we obtain:  
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                                                   2 π        
(9)     – [ne(e – ė)] – 1∫cosφ sinφ(1 + ecosφ) n – 1 d{ [1 + (e – ė)cosφ] – n } = – [ne(e – ė)] – 1× 
                                                    0        
                   

                                                                                                                                                                              
│2 π

                                                    
          × { cosφ sinφ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – n │    –   
                                                                                                 │0        
                      2 π        
           –  ∫[1 + (e – ė)cosφ] – n d{ [ cosφ sinφ(1 + ecosφ) n – 1} } =   
                       0            

                                                             2 π 

         = [ne(e – ė)] – 1{ – ∫sin2φ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – n dφ  +   
                                                              0            
                     2 π     
         + ∫cos2φ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – n dφ  –   
                      0               
                                       2 π 

         – (n – 1)e∫cosφ sin2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ } =   
                                         0       
                                                             2 π       
           = [ne(e – ė)] – 1{ 2 ∫cos2φ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – n dφ  –   
                                                              0      

                  2 π          
           – ∫(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – n dφ –   
                   0             
                                       2 π         

           – (n – 1)e∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  +   
                                        0           
                                        2 π             

           + (n – 1)e∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ } .   
                                        0           

In the above derivation we have used the relation cos2φ + sin2φ = 1 
and trivially following from it simple equality:  
(10)     – sin2φ + cos2φ = 2 cos2φ – 1 .   

Like the expression (7), we shall preliminary compute several 
auxiliary relations, which will help us further simplify the expression (9):  
                        2 π        
(11)       ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  =   

0            
                            2 π           
                = ∫[1 + (e – ė)cosφ](1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  =   
                             0           
                = I0(e,ė,n) + (e – ė)I1(e,ė,n) .  

By analogy with the above computation, we multiply both the 
nominator and the denominator of the integrals by [1 + (e – ė)cosφ]. The 
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assumed condition |e(u) - ė(u)| < 1 for all u imply that this expression is 
never equal to zero. By a fully similar way, we evaluate the following 
integrals:  
                         2 π        
(12) ∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  = I1(e,ė,n) + (e – ė)I2(e,ė,n) ,  
                         0           
 
             2 π        
(13) ∫cos2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  = I2(e,ė,n) + (e – ė)I3(e,ė,n) ,  
                         0               
                        2 π        
(14)       ∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  = I3(e,ė,n) + (e – ė)I4(e,ė,n) ,  
                         0           
where, of course, we have used definitions (3). Then, we continue the 
transformation of the right-hand side of (9):  
                                                            2 π        
(15)       – [ne(e – ė)] – 1∫cosφ sinφ(1 + ecosφ) n – 1 d{[1 + (e – ė)cosφ] – n} =   
                                                             0        
                                                                            

                                                             2 π        
           = [ne(e – ė)] – 1{ 2 ∫cos2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  +   
                                                              0          
                            2 π 

           + 2e ∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  –   
                             0           
                      2 π       
          – ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  –    
                       0           
                          2 π              
          – e  ∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  +   
                           0        
                                              2 π             
           + (– ne + e) ∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ  +   
                                               0               
                                         2 π            
           + (ne – e) ∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n dφ }  =   
                                          0                  
         = [ne(e – ė)] – 1{ 2I2(e,ė,n) + 2(e – ė)I3(e,ė,n) + 2eI3(e,ė,n) + 2e(e – ė)I4(e,ė,n) –    
           – I0(e,ė,n) – (e – ė)I1(e,ė,n) – eI1(e,ė,n) – e(e – ė)I2(e,ė,n) + (– ne + e)I1(e,ė,n) +   
           + (– ne + e)(e – ė)I2(e,ė,n) + (ne – e)I3(e,ė,n) + (ne – e)(e – ė) I4(e,ė,n) } .   

 
Substituting this result into (8) and multiplying by ne(e – ė), we 

obtain the following expression for the integral I4(e,ė,n):   
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(16) e(e – ė)I4(e,ė,n) = I0(e,ė,n) + [e + (n – 1)ė]I1(e,ė,n) – 2I2(e,ė,n) –  
– [3e + (n – 2)ė]I3(e,ė,n).   

In the above derivation we have supposed that n ≠ 0, e(u) ≠ 0 and 
[e(u) – ė(u)] ≠ 0. But the linear relation makes sense even if some of these 
conditions are not fulfilled. We shall now check the validity of (16) for 
these particular cases. In the next, we suppose that u is a certain value of the 
logarithm of the focal parameter p, for which we have e(u) = 0, or [e(u) – 
ė(u)] = 0, or both equalities e(u) = 0 and [e(u) – ė(u)] = 0 hold. In other 
words, the cases integer/noninteger n, zero/nonzero e(u) and zero/nonzero 
[e(u) – ė(u)] give 23 = 8 combinations. The relation (16) is until now proved 
only for one case, namely n ≠ 0, e(u) ≠ 0 and [e(u) – ė(u)] ≠ 0 
simultaneously. We shall now prove (16) for the rest seven cases, which 
may be considered (in some sense) as certain particular exceptional 
situations.  
 

3.1.1. Case n ≠ 0, e(u) = 0, e(u) – ė(u) = 0  =>  e(u) = ė(u) = 0. 
 

The linear relation (16) can be written as:  
(17)       0 = I0(0,0,n) – 2 I2(0,0,n).   
                                                                                                                     2 π                                                       2 π 
We immediately compute that I0(0,0,n) = ∫dφ = 2π and I2(0,0,n) = ∫cos2φ dφ = π.  
                                                                                                                       0                                                          0       

Obviously, (17) is fulfilled.  
 

3.1.2.1. Case n ≠ 0, n ≠ 1, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (16) now becomes:  
(18)       0 = I0(0,ė,n) + (n – 1)ėI1(0,ė,n) – 2I2(0,ė,n) – (n – 2)ėI3(0,ė,n) .   

We compute directly that:   
                                                   2 π                                                                                 2 π 

(19)       I3(0,ė,n) = ∫cos3φ(1 – ėcosφ) – (n + 1) dφ = – ė – 1∫cos2φ[(1 – ėcosφ) – 1] ×  
                                                    0                                                                                    0           
                                                                                                          

                                                                                          2 π 

           × (1 – ėcosφ) – (n + 1) dφ = ė – 1∫cos2φ(1 – ėcosφ) – (n + 1) dφ  –   
                                                                                           0         
                                  2 π                                                                                                       2 π             
              – ė – 1∫cos2φ(1 – ėcosφ) – n dφ = ė – 1I2(0,ė,n) – ė – 1∫(1 – sin2φ)( 1 – ėcosφ) – n dφ  =   
                                   0                                                                                                          0                  
                                                                   

                                                                    2 π                                                     2 π            
             = ė – 1I2(0,ė,n) – ė – 1∫(1 – ėcosφ) – n dφ + ė –2 ∫sinφ(1 – ėcosφ) – n d(1 – ėcosφ)  =   
                                                                     0                                                        0            
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                                                                                                                                                             2 π                      
             = ė – 1I2(0,ė,n) – ė – 1I0(0,ė,n) + I1(0,ė,n) + [(–n + 1)ė2] – 1∫sinφd[(1 – ėcosφ) – (n – 1)] = 
                                                                                                                                                              0      
             = – ė – 1I0(0,ė,n) + I1(0,ė,n) + ė –  1I2(0,ė,n) – [(n – 1)ė2] – 1 ×  
                                                                                                        │ 2 π    2 π 
           × { sinφ[(1 – ėcosφ) – (n – 1)]│   –  ∫ cosφ[(1 – ėcosφ) – (n – 1)] dφ } =   
                                                                                               │ 0        0          
                                                                                                                                                              2 π               
           = – ė – 1I0(0,ė,n) + I1(0,ė,n) + ė – 1I2(0,ė,n) + [(n – 1)ė2] – 1∫cosφ(1 – 2ėcosφ +  
                                                                                                                                                                0 

           + ė2cos2φ)(1 – ėcosφ) – (n + 1) dφ = – ė – 1I0(0,ė,n) + I1(0,ė,n) + ė – 1I2(0,ė,n) +   
 
              +[(n – 1)ė2] – 1I1(0,ė,n) – 2[(n – 1)ė] – 1I2(0,ė,n) + (n – 1) – 1I3(0,ė,n) .   
 
 Consequently, for n ≠ 1 (by supposition), after multiplying the both 
sides of (19) by ė(n – 1), we have: 
   
(20)       – (n – 1)I0(0,ė,n) + [ė – 1 + (n – 1)ė]I1(0,ė,n) + (n – 3)I2(0,ė,n) –  
              – (n – 2)ėI3(0,ė,n) = 0 .  

By direct computation we also get:  
                                                   2 π                                                                                 2 π 

(21)       I2(0,ė,n) = ∫cos2φ(1 – ėcosφ) – (n + 1) dφ = – ė – 1∫cosφ[(1 – ėcosφ) – 1] ×  
                                                    0                                                                                    0                     

                  
                                                                                     2 π         
             × (1 – ėcosφ) – (n + 1) dφ = ė – 1∫cosφ(1 – ėcosφ) – (n + 1) dφ  –   
                                                                                               0            
                                     2 π                                                                                                     2 π                                                                             
                – ė – 1∫cosφ(1 – ėcosφ) – n dφ = ė – 1I1(0,ė,n) – ė – 1∫(1 – ėcosφ) – n d sinφ  =   
                                      0                                                                                                        0              
                                                                                                                                   │ 2 π     2 π 
                = ė – 1I1(0,ė,n) – ė – 1{ sinφ[(1 – ėcosφ) – n]│   –  ∫ sinφ d{ [(1 – ėcosφ) – n] } } =   
                                                                                                                                   │ 0         0          
                                                                  2 π                    
             = ė – 1I1(0,ė,n) – n∫(1 – cos2φ)[(1 – ėcosφ) – (n + 1)] dφ  =   
                                                                    0           
                = ė – 1I1(0,e,n) – n[I0(0,e,n) – I2(0,e,n)] .   
           Therefore:   
(22)       (n – 1)I2(0,e,n) = nI0(0,e,n) – ė – 1I1(0,e,n) ,   or  
(23)       (n – 3)I2(0,e,n) = nI0(0,e,n) – ė – 1I1(0,e,n) – 2I2(0,e,n) .   

 
Substituting this result for (n – 3)I2(0,e,n) into the relation (20), we 

shall obtain the sought equality (18).  
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3.1.2.2. Case n = 1, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (16) becomes:  
(24)       0 = I0(0,ė,1) – 2I2(0,ė,1) + ėI3(0,ė,1) .  

We compute directly that:  
                                                   2 π                                                                     2 π       

(25)       I3(0,ė,1) = ∫ cos3φ(1 – ėcosφ) – 2 dφ = ė – 3∫(– ė3cos3φ)(1 – ėcosφ) – 2 dφ  =   
                                                    0                                                                        0                                              
                                          2 π      

                =  – ė – 3∫(1 – 3ėcosφ + 3ė2cos2φ – ė3cos3φ)(1 – ėcosφ) – 2 dφ  +   
                                             0                                

                                      2 π                                                                                                                     2 π 

                + ė – 3∫(1 – 3ėcosφ + 3ė2cos2φ)(1 – ėcosφ) – 2 dφ = – ė – 3∫(1 – ėcosφ) dφ  +   
                                      0                                                                                                                         0            

                + ė – 3 I0(0,ė,1) – (3ė/ė3)I1(0,ė,1) + (3ė2/ė3)I2(0,ė,1)  =   
                =  – 2πė – 3 + 0 + ė – 3 I0(0,ė,1) – 3ė – 2 I1(0,ė,1) + 3ė – 1 I2(0,ė,1) .   

Let us evaluate the third nonzero term in the right-hand side:  
                                                                                                2 π                                   

(26)       – 3ė – 2 I1(0,ė,1) =  – 3(2ė3) – 1∫2ėcosφ(1 – ėcosφ) – 2 dφ  =   
                                                                                                 0              

                                                 2 π               

             = 3(2ė3) – 1∫(1 – 2ėcosφ + ė2cos2φ)(1 – ėcosφ) – 2 dφ  –   
                                                   0                  

                                                 2 π         

             – 3(2ė3) – 1∫(1 + ė2cos2φ)(1 – ėcosφ) – 2 dφ  =    
                                                0             

                = 3(2ė3) – 1 2π  – 3(2ė3) – 1I0(0,ė,1) – 3(2ė) – 1I2(0,ė,1) .    
Substituting this result into equation (25), we obtain:  

(27)       I3(0,ė,1) = [– ė – 3 + 3(2ė3) – 1]2π + [ė – 3 – 3(2ė3) – 1]I0(0,ė,1) +  
             + [3ė – 1 – 3(2ė) – 1I2(0,ė,1) ,    or  
(28)       I3(0,ė,1) = 2π (2ė – 3) – (2ė – 3)I0(0,ė,1) + 3(2ė) – 1I2(0,ė,1) .   
          In straightforward way we find that:   
                                                                           2 π                                                                        2 π          

(29)       3ė – 1I2(0,ė,1) = 3ė – 1∫cos2φ(1 – ėcosφ) – 2 dφ  = 3ė – 3∫ė2cos2φ(1 – ėcosφ) – 2 dφ =   
                                                                            0                                                                           0       

                                          2 π                                                                                                                2 π 

              = 3ė – 3∫(1 – 2ėcosφ + ė2cos2φ)(1 – ėcosφ) – 2 dφ – 3ė – 3∫(1 – 2ėcosφ) ×   
                                           0                                                                                                                   0         
                 × ( 1 – ėcosφ) – 2 dφ = 3ė – 32π  – 3ė – 3I0(0,ė,1) + 6ė – 2I1(0,ė,1) .    

 
Dividing the both sides of this equality by 6, we have: 

(30)       (2ė3) – 12π = (2ė3) – 1I0(0,ė,1) – ė – 2I1(0,ė,1) + (2ė) – 1I2(0,ė,1) .   
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Substituting this into (28) and multiplying by ė, we shall finally obtain the 
following intermediate result:   
(31)       0 = ė – 1I1(0,ė,1) – 2I2(0,ė,1) + ėI3(0,ė,1) .    

Our further computations include explicit analytical evaluations of 
the integrals I0(0,ė,1) and I3(0,ė,1):   
                                                   2 π     

(32)       I0(0,ė,1) = ∫(1 – ėcosφ) – 2 dφ = 2π (1 – ė2) – 3/ 2 ,  
                                                    0 

according to formula 858.535 from [14]. 
                                                   2 π                                                                      2 π 

(33)       I1(0,ė,1) = ∫cosφ(1 – ėcosφ) – 2 dφ = – ė – 1∫[(1 – ėcosφ) – 1](1 – ėcosφ) – 2 dφ  =  
                                                    0                                                                         0        

                                     

                                       2 π                                                     2 π    

              = ė – 1∫(1 – ėcosφ) – 2 dφ – ė – 1∫(1 – ėcosφ) – 1 dφ .    
                                        0                                                         0       

From Dwight [14], formula 858.525, we find that:   
                        2 π       

(34)       ∫(1 – ėcosφ) – 1 dφ = 2π (1 – ė2) – 1/ 2 .   
                         0       

Combining evaluations (32) and (34) into (33), the result is:  
(35)       I1(0,ė,1) = 2π ė – 1(1 – ė2) – 1(1 – ė2) – 1/ 2  – 2π ė – 1(1 – ė2) – 1/ 2  =   
                 =  2π ė(1 – ė2) – 3/ 2  = ėI0(0,ė,1) .  

Substituting the above result into (31), we finally obtain the 
necessary relation (24). 
 

3.1.3. Case n ≠ 0, e(u) ≠ 0, e(u) – ė(u) = 0  => ė(u) = e(u) ≠ 0. 
 

The relation (16) can be written as:  
(36)       0 = I0(e,ė = e,n) + nėI1(e,ė = e,n) – 2I2(e,ė = e,n) – (n + 1)ėI3(e,ė = e,n) .  

We compute directly that:  
                                                            2 π                                                                       2 π               

(37)       I3(e,ė = e,n) = ∫cos3φ(1 + ecosφ) n – 2 dφ = e – 1∫[(1 + ecosφ) – 1](1 + ecosφ) n – 2  ×  
                                                             0                                                                         0            

 

                                                                   2 π                                                                      2 π             

              × cos2φ dφ = e – 1∫cos2φ(1 + ecosφ) n – 1dφ  – e – 1∫cos2φ(1 + ecosφ) n – 2 dφ =  
                                                                    0                                                                          0   

                                                                                2 π 

              =  – e – 1I2(e,ė = e,n) + e – 1∫cosφ(1 + ecosφ) n – 1d sinφ = – e – 1I2(e,ė = e,n) +  
                                                                                           0            

                                                                                                         │2 π       2 π              

              + e – 1{ sinφ cosφ(1 + ecosφ) n – 1│   –   ∫sinφ d[cosφ(1 + ecosφ) n – 1] }  =   
                                                                                                                 │0           0 
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                                                                                 2 π                                                                                    2 π 
          = – e – 1I2(e,ė = e,n) + e – 1∫sin2φ(1 + ecosφ) n – 1dφ + (n – 1)e – 1∫sinφ cosφ  ×   
                                                                                  0                                                                                       0          

                                                                                                                                               2 π          

         × (1 + ecosφ) n – 2esinφ dφ = – e – 1I2(e,ė = e,n) + e – 1∫(1 – cos2φ)(1 + ecosφ) n – 1dφ + 
                                                                                                                                                0      

                                   2 π                                                                                                                                  2 π             

        + (n – 1)∫cosφ sin2φ(1 + ecosφ) n – 2dφ = – e – 1I2(e,ė = e,n) + e – 1∫(1 + ecosφ) n – 2dφ + 
                                    0                                                                                                                                     0        

                    2 π                                                                  2 π                                                            2 π          

          + ∫cosφ(1 + ecosφ) n – 2dφ – e – 1∫cos2φ(1 + ecosφ) n – 2dφ – ∫cos3φ(1 + ecosφ) n – 2dφ + 
                     0                                                                      0                                                               0                                          

                                     2 π                                                                            2 π             

         + (n – 1)∫cosφ(1 + ecosφ) n – 2dφ – (n – 1) ∫cos3φ (1 + ecosφ) n – 2dφ  =   
                                      0                                                                               0  

         = – e – 1I2(e,ė = e,n) + e – 1I0(e,ė = e,n) + I1(e,ė = e,n) – e – 1I2(e,ė = e,n) –   
         – I3(e,ė = e,n) + (n – 1)I1(e,ė = e,n) – (n – 1)I3(e,ė = e,n) .   

Therefore:  
(38)       0 = e – 1I0(e,ė = e,n) + nI1(e,ė = e,n) – 2e – 1I2(e,ė = e,n) – (n + 1)I3(e,ė = e,n) .  

Multiplying (38) by e and taking into account that for the considered 
value of u e(u) = ė(u), we complete the proof of the linear relation (36).    
 

3.1.4. Case n = 0, e(u) = 0, e(u) – ė(u) = 0  => ė(u) = 0. 
 

The relation (16) can be written as:   
(39)       0 = I0(0,0,0) – 2I2(0,0,0) .  
                                                                                   2 π                                                         2 π         

In this case I0(0,0,0) = ∫dφ = 2π and I2(0,0,0)  = ∫cos2φ dφ = π. Then (39)   
                                                                                     0                                                            0          

immediately follows. 
 

3.1.5. Case n = 0, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (16) becomes:  
(40)       0 = I0(0,ė,0) – ėI1(0,ė,0) – 2I2(0,ė,0) + 2ėI3(0,ė,0) .  

The direct computation gives:  
                                           2 π                                                                       2 π       

(41)   I3(0,ė,0) = ∫cos3φ(1 – ėcosφ) – 1dφ = – ė – 1∫cos2φ[(1 – ėcosφ) – 1](1 – ėcosφ) – 1dφ = 
                                             0                                                                         0            

                              

                              

                              2 π                                                                  2 π      

           = ė – 1∫cos2φ(1 – ėcosφ) – 1dφ – ė – 1∫cos2φ dφ = ė – 1I2(0,ė,0) – π ė – 1 .   
                               0                                                                    0     
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Multiplying by 2ė, we shall obtain:  
(42)       2ėI3(0,ė,0) – 2I2(0,ė,0) = – 2π .  

Further we also evaluate that:  
                                                  

                                                   2 π                                                                       2 π 

(43)       I1(0,ė,0) = ∫cosφ(1 – ėcosφ) – 1dφ =  – ė – 1∫[(1 – ėcosφ) – 1](1 – ėcosφ) – 1dφ  =   
                                                    0                                                                         0  

                                                                2 π     

                = – 2πė – 1 + ė – 1∫(1 – ėcosφ) – 1dφ .    
                                                                 0    

Consequently:  
(44)       ėI1(0,ė,0) – I0(0,ė,0) =  – 2π .    

Combining (42) and (44), we attain to the relation (40). 
 

3.1.6. Case n = 0, e(u) ≠ 0, e(u) – ė(u) = 0  => ė(u) = e(u) ≠ 0. 
 

The linear relation (16) can be written as:   
(45)       0 = I0(e,ė = e,0) – 2I2(e,ė = e,0) – 3ėI3(e,ė = e,0) .   

To prove the above statement, we must perform evaluation of the 
integrals   
                                   2 π                                                                                      2 π     

I0(e,ė = e,0) = ∫(1 – ėcosφ) – 2dφ , …, I3(e,ė = e,0) = ∫cos3φ(1 – ėcosφ) – 2dφ . Clearly, this  
                                    0                                                                                          0           

is fully analogous to the estimation of the integrals in the case 3.1.2.2. We 
must only replace – ė(u) in the denominators of the integrals by e(u) and 
proceed by the same way, when we were proving the relation (24). We shall 
not write out these clumsy calculations again, in order to prove validity of 
the relation (45). 
 

3.1.7. Case n = 0, e(u) ≠ 0, e(u) – ė(u) ≠ 0. 
 

The linear relation (16) now becomes: 
(46)       e(e – ė)I4(e,ė,0) = I0(e,ė,0) + (e – ė)I1(e,ė,0) – 2I2(e,ė,0) – (3e – 2ė)I3(e,ė,0) .  

In an earlier paper [11] (formulas (3a) – (3d)) we have already 
derived in explicit form analytical expressions for the integrals, entering in 
(46). We shall now rewrite in a little more compact form these results. Let 
us denote by A(e,ė) the multiplier: 
(47)       A(e,ė) = 2πė – 2(1 – e2) – 3/ 2[1 – (e – ė)2] – 1/ 2 .    
Then, according to [11] (formulas (3a) – (3d)), with this simplification of 
the notations, we have: 
(48)       I0(e,ė,0) = A(e,ė){ eė[1 – (e – ė)2]1/ 2 – e(e – ė)(1 – e2)[1 – (e – ė)2]1/ 2 +  
             + (e – ė)2(1 – e2) 3/ 2 },    
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(49)       I1(e,ė,0) = A(e,ė){ (e – ė – e3)[1 – (e – ė)2]1/ 2 – (e – ė)(1 – e2) 3/ 2 },    
(50)       I2(e,ė,0) = A(e,ė){ (– 1 + e2 + eė)[1 – (e – ė)2]1/ 2 + (1 – e2) 3/ 2 },   
(51)       I3(e,ė,0) = A(e,ė)e – 2(e – ė) – 1{– e2(1 – e2) 3/ 2 + [e2 – e4 – e3ė – ė2 + 2e2ė2 +  
              + ė2(1 – e2) 3/ 2][1 – (e – ė)2]1/ 2 },   
(52)       e(e – ė)I4(e,ė,0) = A(e,ė)e – 2(e – ė) – 1{ e3(1 – e2) 3/ 2 + (– e3 + e5 + e4ė + 3eė2 –   
             – 5e3ė2 – 2ė3 + 3e2ė3)[1 – (e – ė)2]1/ 2 + (– 3eė2 + 2ė3)(1 – e2) 3/ 2[1 – (e – ė)2]1/ 2 }.  

Let us now compute the right-hand side of the equality (46):  
(53)       I0(e,ė,0) + (e – ė)I1(e,ė,0) – 2I2(e,ė,0) – (3e – 2ė)I3(e,ė,0) = A(e,ė)e – 2(e – ė) – 1 ×   
          × { e2(e – ė)eė[1 – (e – ė)2]1/ 2 – e3(e – ė)2(1 – e2)[1 – (e – ė)2]1/ 2 +  
          + e2(e – ė)3(1 – e2) 3/ 2 + e2(e – ė)2(e – ė – e3)[1 – (e – ė)2]1/ 2 – e2(e – ė)2(1 – e2) 3/ 2 +   
          + (2 – 2e2 – 2eė)e2(e – ė)[1 – (e – ė)2]1/ 2 – 2e2(e – ė)(1 – e2) 3/ 2 +   
          + (3e – 2ė)e2(1 – e2) 3/ 2 + (– 3e + 2ė)(e2 – e4 – e3ė – ė2 + 2e2ė2 +   
          + ė2(1 – e2) 3/ 2[1 – (e – ė)2]1/ 2 } =  
          = A(e,ė)e – 2(e – ė) – 1{(– e3 + e5 + e4ė + 3eė2 – 5e3ė2 – 2ė3 + 3e2ė3)[1 – (e – ė)2]1/ 2 +  
          + e3(1 – e2) 3/ 2 + (– 3eė2 + 2ė3)(1 – e2) 3/ 2[1 – (e – ė)2]1/ 2 } = e(e – ė)I4(e,ė,0) .  

Hence, the linear relation (46) is proved. With this, we have also 
completed the validity of relation (16) in the general case. That is, for 
integer/noninteger powers n, zero/nonzero values of e(u) (for |e(u)| < 1) and 
ė(u) (for |ė(u)| < 1), and also for zero/nonzero values of [e(u) – ė(u)] (for 
|e(u) – ė(u)| < 1). 
 

3.2. Elimination of the integral I2(e,ė,n)  
 

Generally speaking, the approach in the computing of I4(e,ė,n) is the 
following: we perform a series of evaluations of I4(e,ė,n), decomposing its 
integrand into such, containing into their nominators powers of cosφ equal 
or less than 4, and the same denominators [1 + (e – ė)cosφ] n + 1. After that, 
we transfer the repeatedly appeared integrals I4(e,ė,n) in the right-hand side 
into the left-hand side, in order to combine all I4(e,ė,n). Unfortunately, such 
a procedure does not work at all when we try to apply it for elimination of 
the integral I3(e,ė,n) (we suppose that the linear relation (16) is already used 
for removing of the integral I4(e,ė,n)). The reason for this unsuccessful 
attempt is that the multiplier before I3(e,ė,n) equals to zero for all values of 
the variable u. It is suspected that this impossibility is in relation to the 
linear independence of the considered seven integrals (1), (2) and (3). We 
shall not deal with this problem in the present paper and continue to the 
evaluation of the integral I2(e,ė,n).    

According to the definition (3), we can write:  
                                                   2 π                    

(54)       I3(e,ė,n) = ∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  =   
                                                    0                     
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                                 2 π      

           = e – 1∫cos2φ[(1 + ecosφ) – 1](1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  = 
                                 0              

                                 

                                 2 π              

           = e – 1∫cos2φ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) dφ  –   
                                  0           

                                2 π           

           – e – 1∫cos2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  =   
                                 0              

                                                                        2 π         

             = – e – 1I2(e,ė,n) + e – 1∫(1 – sin2φ)(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) dφ  =  
                                                                          0              

   
                                                                      2 π          

           = – e – 1I2(e,ė,n) + e – 1∫(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) dφ  +   
                                                                          0       

 

                                                  2 π             

           + [e(e – ė)] – 1∫sinφ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1) d[1 + (e – ė)cosφ] .   
                                                  0             

Applying a relation analogous to (7), we obtain:  
(55)       I3(e,ė,n) = – e – 1I2(e,ė,n) + e – 1I0(e,ė,n) + I1(e,ė,n)  – 
                                                    2 π      

           – [ne(e – ė)] – 1∫sinφ(1 + ecosφ) n – 1d{ [1 + (e – ė)cosφ] – n }  =  
                                                     0          

 

         = e – 1I0(e,ė,n) + I1(e,ė,n) – e – 1I2(e,ė,n) – [ne(e – ė)] – 1{ sinφ(1 + ecosφ) n – 1 ×   
                                                                   │2 π                                         2 π 

        × [1 + (e – ė)cosφ] – n│ } + [ne(e – ė)] – 1{ ∫cosφ(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – ndφ –  
                                                                       │0                                             0               

                                       2 π     

         – e(n – 1)∫sin2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – ndφ }  =   
                                        0                

                                                                                                                                                          2 π      

           = e – 1I0(e,ė,n) + I1(e,ė,n) – e – 1I2(e,ė,n) + [ne(e – ė)] – 1{ ∫cosφ[1 + (e – ė)cosφ] × 
                                                                                                                                                           0         

                                                                                                                                           2 π    

         ×(1 + ecosφ) n – 1[1 + (e – ė)cosφ] – (n + 1)dφ – (n – 1)e{ ∫(1 + ecosφ) n – 2  ×    
                                                                                                                                                     0      

                                                                                                          

                                                                                                         2 π    

         × [1 + (e – ė)cosφ] – (n + 1)dφ + (e – ė)∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1)dφ – 
                                                                                                          0        

                     

                    2 π     

           – ∫cos2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1)dφ –  
                     0       
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                                      2 π    

           – (e – ė) ∫cos3φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1)dφ } } =   
                                       0         

         = e – 1I0(e,ė,n) + I1(e,ė,n) – e – 1I2(e,ė,n) + [ne(e – ė)] – 1[I1(e,ė,n) + eI2(e,ė,n)  +  
         + (e – ė)I2(e,ė,n) + e(e – ė)I3(e,ė,n) – (n – 1)eI0(e,ė,n) – (n – 1)e(e – ė)I1(e,ė,n) + 
           + (n –1)eI2(e,ė,n) + (n – 1)e(e – ė)I3(e,ė,n)] .    
 Consequently, we have the following expression:  
(56)       I3(e,ė,n) = {e – 1 – (n – 1)[n(e – ė) ] – 1}I0(e,ė,n) +  
           + {1 + [ne(e – ė)] – 1 – (n – 1)n – 1}I1(e,ė,n) + {– e – 1 + [n(e – ė)] – 1 + (ne) – 1  +   
             + (n – 1)[n(e – ė)] – 1}I2(e,ė,n) + [n – 1 + (n – 1)n – 1]I3(e,ė,n) .   

It is evident that the integrals I3(e,ė,n) from the both sides of the 
above equality cancel out, and it is impossible to determine any linear 
relation between I3(e,ė,n), I0(e,ė,n), I1(e,ė,n), and I2(e,ė,n), as already 
mentioned above. Nevertheless, the result (56) may be used to eliminate the 
integral I2(e,ė,n). Multiplying (56) by ne(e – ė), we obtain:  
(57)       [e + (n – 1)ė]I2(e,ė,n) = (– e + nė)I0(e,ė,n) – [1 + e(e – ė)]I1(e,ė,n) .   

In the above derivation, we again have supposed that simultaneously 
are fulfilled the following three conditions: n ≠ 0, e(u) ≠ 0, e(u) – ė(u) ≠ 0, 
for every considered value of the independent variable u ≡ ln p ( p is the 
focal parameter of the particle orbit). We note that (57) makes sense even if 
some (or even all) of these restrictions are violated.  
 

3.2.1. Case n ≠ 0, e(u) = 0, e(u) – ė(u) = 0  => e(u) = ė(u) = 0. 
                                                                                                                                                                          2 π     

       The relation (57) is obviously satisfied, because I1(0,0,n) = ∫cosφ dφ = 0.  
                                                                                                                                                                                        0              

3.2.2. Case n ≠ 0, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (57) takes the form: 
(58)       (n – 1)ėI2(0,ė,n) = nėI0(0,ė,n) – I1(0,ė,n) .  

We compute that:  
                                               2 π                                                                  2 π 

(59)     I2(0,ė,n) = ∫cos2φ(1 – ėcosφ) – (n + 1)dφ = ∫(1 – ėcosφ) – (n + 1)dφ – 
                            0                                                                     0         
                    2 π                                                                                                     2 π                                        

           – ∫sin2φ(1 – ėcosφ) – (n + 1)dφ = I0(0,ė,n) – ė – 1∫sinφ(1 – ėcosφ) – (n + 1)d(1 – ėcosφ) =   
                     0                                                                                                        0    

                                                               2 π                                                                                                                                                   │2 π 

         = I0(0,ė,n) + (nė) – 1∫sinφd[(1 – ėcosφ) – n] = I0(0,ė,n) + (nė) – 1{sinφ(1 – ėcosφ) – n│ – 
                 

                                                0                                                                                                                                                    │0                         

                    2 π                                                                                                    2 π 

         – ∫cosφ(1 – ėcosφ) – ndφ} = I0(0,ė,n) – (nė) – 1∫cosφ(1 – ėcosφ)(1 – ėcosφ) – (n + 1)dφ = 
                     0                                                                                                       0         
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         = I0(0,ė,n) – (nė) – 1I1(0,ė,n) + n – 1I2(0,ė,n) .    
       From this equality follows:  
(60)       (1 – n – 1)I2(0,ė,n) ≡ (n –1)ė(nė) – 1I2(0,ė,n) = I0(0,ė,n) – (nė) – 1I1(0,ė,n) .  
       Multiplying by nė ≠ 0, we obtain the seeked equality (58). 
 

3.2.3. Case n ≠ 0, e(u) ≠ 0, e(u) – ė(u) = 0  => ė(u) = e(u) ≠ 0. 
 

The relation (57) in this case becomes: 
(61)       [e + (n – 1)ė]I2(e,ė = e,n) ≡ nėI2(e,ė = e,n) = (n – 1)ėI0(e,ė = e,n) – I1(e,ė = e,n) .  

We directly compute that: 
                                                            2 π                                                                      2 π            

(62)       I2(e,ė = e,n) = ∫cos2φ(1 + ecosφ) n – 2dφ = e – 1∫cosφ[(1 + ecosφ) – 1] ×   
                                                             0                                                                         0            

                                                                                      2 π                                                                   2 π                 

           ×(1 + ecosφ) n – 2dφ = – e – 1∫cosφ(1 + ecosφ) n – 2dφ + e – 1∫(1 + ecosφ) n – 1d sinφ =  
                                                                                       0                                                                      0      

                                                                                                                                                  │2 π     2 π        

           = – e – 1I1(e,ė = e,n) + e – 1{ sinφ(1 + ecosφ) n – 1│   –  ∫sinφ d[(1 + ecosφ) n – 1]} =  
                                                                                                                                          │0         0        

                                                                                          2 π 

             = – e – 1I1(e,ė = e,n) + (n – 1)∫(1 – cos2φ)(1 + ecosφ) n – 2dφ  =   
                                                                                           0       

             = – e – 1I1(e,ė = e,n) + (n – 1)I0(e,ė = e,n) – (n – 1)I2(e,ė = e,n) .    
Multiplication of the both sides by ė(u) = e(u) ≠ 0 gives the result:  

(63)       nėI2(e,ė = e,n) = (n – 1)ėI0(e,ė = e,n) – I1(e,ė = e,n) ,  
that proves (61). 
 

3.2.4. Case n = 0, e(u) = 0, e(u) – ė(u) = 0  => ė(u) = 0. 
                                                                                                                                                                         2 π 

       The relation (57) is obviously true, because I1(0,0,0) = ∫cosφ dφ = 0 .    
                                                                                                                                                                                0        

 
3.2.5. Case n = 0, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (57) now becomes:  
(64)       – ėI2(0,ė,0) =  – I1(0,ė,0) .  

It is evident that:  
                                               2 π                                                                       2 π                                                                   
(65)     I2(0,ė,0) = ∫cos2φ(1 – ėcosφ) – 1dφ = – ė – 1∫cosφ[(1 – ėcosφ) – 1](1 – ėcosφ) – 1dφ = 
                                                0                                                                          0               

                                  2 π                               2 π 

           = – ė – 1∫cosφ dφ + ė – 1∫cosφ(1 – ėcosφ) – 1dφ = ė – 1I1(0,ė,0) .  
                                   0                                  0             
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       Multiplication of the above equality by – ė(u) ≠ 0 gives (64).  
 

3.2.6. Case n = 0, e(u) ≠ 0, e(u) – ė(u) = 0  => e(u) = ė(u) ≠ 0. 
 

The relation (57) can be written in the following form:  
(66)       0 = – eI0(e,ė = e,0) – I1(e,ė = e,0) .    

We directly compute that:   
                                                            2 π                                                                2 π           

(67)       I1(e,ė = e,0) = ∫cosφ(1 + ecosφ) – 2dφ = e – 1∫[(1 + ecosφ) – 1](1 + ecosφ) – 2dφ  =  
                                                             0                                                                    0        

                                   2 π                                                2 π            
                   =  – e – 1∫(1 + ecosφ) – 2dφ + e – 1∫(1 + ecosφ)dφ  =   
                                             0                                                  0                  

              = – e – 1I0(e,ė = e,0) + 2π e – 1(1 – e2) – 1/ 2 ,  
where we have used formula 858.525 from [14]. But according to formula 
858.535 from the same source [14]:  
                                                            2 π               

(68)       I0(e,ė = e,0) = ∫(1 + ecosφ) – 2dφ = 2π (1 – e2) – 3/ 2 = (1 – e2) – 1 2π (1 – e2) – 1/ 2 ,  
                                                             0         

which means that: 
(69)       2π (1 – e2) – 1/ 2  = (1 – e2)I0(e,ė = e,0) .  

Substituting this result into (67), we have that: 
(70)       I1(e,ė = e,0) = – e – 1I0(e,ė = e,0) + e – 1(1 – e2)I0(e,ė = e,0) =  – e I0(e,ė = e,0) .  

Hence, (66) is proved.  
 

3.2.7. Case n = 0, e(u) ≠ 0, e(u) – ė(u) ≠ 0. 
 

The linear relation (57) can be written as: 
(71)       (e – ė)I2(e,ė,0) = – eI0(e,ė,0) – [1 + e(e – ė)]I1(e,ė,0) . 

Let us calculate at first, using as before, the explicit expressions for 
the integrals from paper [11] (formulas (3a) – (3c)). In the present paper we 
have written them as the expressions (48), (49) and (50) for I0(e,ė,0), 
I1(e,ė,0), and I2(e,ė,0), respectively. From (50) we obtain:  
(72)      (e – ė)I2(e,ė,0) = A(e,ė){(e – ė)(– 1 + e2 + eė)[1 – (e – ė)2] 1/ 2 + (e – ė)(1 – e2) 3/ 2}. 

Further we evaluate the right-hand side of (71):   
(73)      – e I0(e,ė,0) – [1 + e(e – ė)]I1(e,ė,0) = A(e,ė){– e2ė[1 – (e – ė)2] 1/ 2 +   
            + e2(e – ė)(1 – e2)[1 – (e – ė)2] 1/ 2 – e(e – ė)2(1 – e2) 3/ 2 – [1 + e(e – ė)](e – ė – e3) ×    
            × [1 – (e – ė)2] 1/ 2 + [1 + e(e – ė)](e – ė) (1 – e2) 3/ 2 } =  
               = A(e,ė){(– e + e3 + ė – eė2)[1 – (e – ė)2] 1/ 2 + (e – ė)(1 – e2) 3/ 2 } .  

But (e – ė)(– 1 + e2 + eė) = – e + e3 + ė – eė2 and hence:  
(74)       – e I0(e,ė,0) – [1 + e(e – ė)]I1(e,ė,0) =   

= A(e,ė){(e – ė)(– 1 + e2 + eė)[1 – (e – ė)2] 1/ 2 + (e – ė)(1 – e2) 3/ 2 }.   
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The right-hand sides of (72) and (74) coincide and this proves the 
relation (71). This also completes the validity of (57)in the general case of 
integer/noninteger powers n, zero/nonzero values of e(u) (for |e(u)| < 1) and 
zero/nonzero values of [e(u) – ė(u)] (for |e(u) – ė(u)| < 1).  
 

3.3. Elimination of the integral I1(e,ė,n) 
 

In the next derivation we shall use not only definitions (3), but also 
definition (1) and (2). According to the later and the identity cosφ2 + sinφ2 = 1, 
we have:  
                                                     2 π                

(75)       I0+(e,ė,n) = ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ  =   
                                                      0         

                        2 π            

           = ∫(cosφ2 + sinφ2)(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ  =   
                         0                

                                              2 π          

           = (e – ė) – 1∫cosφ[1 + (e – ė)cosφ – 1](1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ  –    
                                               0                     

                                              2 π      

           – (e – ė) – 1∫sinφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) d[1 + (e – ė)cosφ]  =   
                                              0                    

                                               2 π           

           =  (e – ė) – 1∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  –    
                                                0                 

                                                  2 π       

             = – (e – ė) – 1∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ  +  
                                                   0      

                                                                   2 π       

           + [(n + 1)(e – ė)] – 1∫sinφ(1 + ecosφ) n – 2 d{ [1 + (e – ė)cosφ] – (n + 1) }  =  
                                                                    0       

                                                                                              2 π      

           = (e – ė) – 1I1(e,ė,n) – (e – ė) – 2∫{[1 + (e – ė)cosφ] – 1}(1 + ecosφ) n – 2  ×  
                                                                                                0               

 

           × [1 + (e – ė)cosφ] – (n + 2) dφ = [(n + 1)(e – ė)] – 1{ sinφ(1 + ecosφ) n – 2  ×    
                                                                                    │2 π    2 π         

           × [1 + (e – ė)cosφ] – (n + 1) │  –  ∫[1 + (e – ė)cosφ] – (n + 1) d [sinφ(1 + ecosφ) n – 2] }  =   
                                                                                        │0        0      

                                                                                     2 π             

           = (e – ė) – 1I1(e,ė,n) – (e – ė) – 2∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  +   
                                                                                               0      

                                     2 π           

           + (e – ė) – 2∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ  –   
                                               0        

                                                               



 27 

                                                                  2 π       

           – [(n + 1)(e – ė)] – 1∫cosφ(1 + ecosφ) n – 2 [1 + (e – ė)cosφ] – (n + 1) dφ  +   
                                                                   0       

                                                                                    2 π        

          + (n – 2)e[(n + 1)(e – ė)] – 1∫(1 – cos2φ)(1 + ecosφ) n – 3[1 + (e – ė)cosφ] – (n + 1) dφ = 
                                                                                     0       

          = (e – ė) – 1I1(e,ė,n) – (e – ė) – 2I0(e,ė,n) + (e – ė) – 2I0+(e,ė,n) –   
                                                                                                                                                         2 π      

          – [(n + 1)(e – ė)] – 1I1(e,ė,n) + (n – 2)e[(n + 1)(e – ė)] – 1∫(1 + ecosφ) n – 3 ×  
                                                                                                                                                          0   

 

          × [1 + (e – ė)cosφ] – (n + 1) dφ  –   
                                                                                    2 π           

            – (n – 2)e[(n + 1)(e – ė)] – 1∫cos2φ(1 + ecosφ) n – 3 [1 + (e – ė)cosφ] – (n + 1) dφ .   
                                                                                     0   

The later integral in the right-hand side in the above equality can 
easily be computed:  
                        2 π           

(76)       ∫cos2φ(1 + ecosφ) n – 3 [1 + (e – ė)cosφ] – (n + 1) dφ  =  
                         0              

                                 2 π     

           = e – 1∫cosφ[(1 + ecosφ) – 1](1 + ecosφ) n – 3 [1 + (e – ė)cosφ] – (n + 1) dφ  =   
                                  0        

                                                                    2 π       

           = e – 1I1(e,ė,n) – e – 2∫[(1 + ecosφ) – 1](1 + ecosφ) n – 3 [1 + (e – ė)cosφ] – (n + 1) dφ  =   
                                                                     0        

             = e – 1I1(e,ė,n) – e – 2I0(e,ė,n) + e – 2I0-(e,ė,n) ,   
where we have taken into account the definition (1). Substituting (76) into 
(75), we arrive at the following linear dependence between the four integrals 
I0-(e,ė,n), I0+(e,ė,n), I0(e,ė,n) and I1(e,ė,n):    
(77)       0 = [(e – ė) – 2 – 1]I0+(e,ė,n) + (n – 2)[(n + 1)(e – ė)] – 1(e – e – 1)I0-(e,ė,n) +  
                + { (n – 2)[(n + 1)e(e – ė)] – 1 – (e – ė) – 2 }I0(e,ė,n) + { (e – ė) – 1 –   
                – [(n + 1)( e – ė)] – 1 – (n – 2)[(n + 1)( e – ė)] – 1 }I1(e,ė,n) .  

We choose to estimate from the above relation the integral I1(e,ė,n). 
After the multiplication of the both sides of (77) by (e – ė), the result is:  
(78)       2(n + 1) – 1I1(e,ė,n) = (n – 2)(1 – e2)[(n + 1)e] – 1I0-(e,ė,n) +  
                + [(e – ė)2 – 1]( e – ė) – 1I0+(e,ė,n) + { (e – ė) – 1 – (n – 2)[(n + 1)e] – 1 }I0(e,ė,n) .   

Another multiplication by (n + 1)e(e – ė) leads to the next 
evaluation:  
(79)       2e(e – ė) I1(e,ė,n) = (n – 2)(e – ė)( 1 – e2) I0-(e,ė,n) +  
                + (n + 1)e[(e – ė)2 – 1] I0+(e,ė,n) + [3e + (n – 2)ė] I0(e,ė,n) .  

We note that (79) is derived under the assumptions n ≠ – 1, e(u) ≠ 0 
(for |e(u)| < 1) and [e(u) – ė(u)] ≠ 0 (for |e(u) – ė(u)| < 1), which guarantees 
that the denominators into the expressions (75) – (78) will also be different 
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from zero. As in the previous cases, concerning the integrals I4(e,ė,n) and 
I2(e,ė,n), the derived equality (79) makes sense even if these limitations are 
not fulfilled for a certain value u ≡ ln p. We now shall check this statement.    
 

3.3.1. Case n ≠ – 1, e(u) = 0, e(u) – ė(u) = 0  => e(u) = ė(u) = 0. 
 

The equality (79) is obviously true, because the both sides are equal 
to zero.  
 

3.3.2.1. Case n = 2, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

Again (79) has both sides equal to zero.   
 

3.3.2.2. Case n ≠ – 1, n ≠ 2, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (79) in this case can be written as:  
(80)       0 = – (n – 2)ėI0-(0,ė,n) + (n – 2)ėI0(0,ė,n) .  

Because (n – 2)ė ≠ 0, we may divide by this quantity, to obtain:  
(81)       I0-(0,ė,n) – I0(0,ė,n) = 0 .  

Using definitions (1) and (3), direct computation shows that:  
                                                    2 π           

(82)       I0-(0,ė,n) = ∫(1 – ėcosφ) – (n + 1) dφ = I0(0,ė,n) .  
                                                     0      

Hence, equality (81) is trivially proved and the same is true for (79).  
 

3.3.3. Case n ≠ – 1, e(u) ≠ 0, e(u) – ė(u) = 0,  => ė(u) = e(u) ≠ 0. 
 

The linear relation (79) can be written in the following way:  
(83)       0 = – (n + 1)eI0+(e,ė = e,n) + (n + 1)ėI0(e,ė = e,n) .  
        Because ė(u) = e(u) ≠ 0 and (n + 1) ≠ 0,we can divide the both sides 
by (n + 1)e: 
(84)       I0(e,ė = e,n) – I0+(e,ė = e,n) = 0 .  

From definitions (2) and (3) we directly compute that: 
                                                            2 π                                                                  

(85)       I0(e,ė = e,n) = ∫(1 + ecosφ) n – 2 dφ = I0+(e,ė = e,n) .  
                                                             0      

That is, equality (84) and, hence, the linear relation (79) are also true in that 
case.   
 

3.3.4. Case n = – 1, e(u) = 0, e(u) – ė(u) = 0  => ė(u) = 0. 
 

The equality (79) now becomes 0 = 0 and it is trivially fulfilled.  
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3.3.5. Case n = – 1, e(u) = 0, e(u) – ė(u) ≠ 0  => ė(u) ≠ 0. 
 

The relation (79) now becomes:  
(86)       0 = 3ėI0-(0,ė,–1) – 3ėI0(0,ė,– 1) ,  or   I0-(0,ė,–1) = I0(0,ė,–1) .  
                                                         2 π                                                           2 π          

We have I0(0,ė,–1) = ∫dφ = 2π and I0-(0,ė,–1) = ∫dφ = 2π . Therefore, (86) and  
                                                          0                                                              0         

correspondingly (79) are satisfied. 
 

3.3.6. Case n = – 1, e(u) ≠ 0, e(u) – ė(u) = 0  => ė(u) = e(u) ≠ 0. 
 

In this particular case, the both sides of the equality (79) are equal to 
zero. 

  
3.3.7. Case n = – 1, e(u) ≠ 0, e(u) – ė(u) ≠ 0. 

 

The relation (79) now can be written as:  
 

(87)       2e(e – ė)I1(e,ė,– 1) = – 3(e – ė)(1 – e2)I0-(e,ė,–1) + 3(e – ė)I0(e,ė,–1) .   
 

Because (e – ė) ≠ 0, we may divide (87) by (e – ė) and check the 
validity of the equality:  

  
(88) 2eI1(e,ė,– 1) = – 3(1 – e2)I0-(e,ė,–1) + 3I0(e,ė,–1) .   

 

In an earlier paper [11], we have already computed for n = – 1 in an 
explicit form the following analytical expressions for the integrals I0(e,ė,–
1), I1(e,ė,–1) and I0-(e,ė,–1) (see in [11] formulas (2a), (2b) and (2h), 
respectively):  

 

(89)       I0(e,ė,–1) = π (2 + e2)(1 – e2) – 5/ 2 ,   
(90)       I1(e,ė,–1) = – 3π e(1 – e2) – 5/ 2 ,   
(91)       I0-(e,ė,–1) = π (2 + 3e2)(1 – e2) – 7/ 2 .   

 

Consequently:  
(92)       2eI1(e,ė,–1) = – 6π e2(1 – e2)(1 – e2) – 7/ 2 ,  
(93)       – 3(1 – e2)I0-(e,ė,–1) + 3I0(e,ė,–1) = – 3π (2 + 3e2)(1 – e2 )(1 – e2) – 7/ 2  +   
                 + 3π (2 + e2)(1 – e2 )(1 – e2) – 7/ 2 = – 6π e2(1 – e2 )(1 – e2) – 7/ 2 .   

 

The right-hand sides of (92) and (93) are equal, and, hence, the 
linear relation (87) is proved. Thus, the reliability of the linear relation (79) 
is shown to remain valid in the general case of integer/noninteger powers n, 
e(u) equal or not equal to zero (for |e(u)| < 1) and [e(u) – ė(u)] equal or not 
equal to zero (for |e(u) – ė(u)| < 1) for arbitrary values of u ≡ ln p. These 
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conditions may be separately or simultaneously encountered, and the 
equality (79) may be used without specifying any restrictions, like the above 
considered.  
 

4. Conclusions 
 

In a series of papers ([10] – [13]), we have investigated the dynamical 
equation (4), governing the structure of the stationary elliptical discs in the 
model developed by Lyubarskij et al. [4]. Our main goal is to reveal the 
properties of this second order ordinary differential equation in a fully (as 
far as possible) analytical manner, without introducing any additional 
simplifications into the model, except these which already exist in the 
original development [4]. The first successful step in this direction was the 
establishment that the dynamical equation is (in the most general case) a 
homogeneous differential equation [12]. The next step in the simplification 
of the equation was to eliminate four among the seven integrals, entering as 
functions of e(u), ė(u) and n into equation (4). In the present paper we 
pointed out how to do so with three of them, namely: I4(e,ė,n), I2(e,ė,n) and 
I1(e,ė,n). The elimination of the fourth integral I0(e,ė,n) will be considered 
in a forthcoming paper. As a final result, they may be represented, by 
means of linear relations, through two integrals, namely: I0-(e,ė,n) and 
I0+(e,ė,n). The later two integrals may be shown to be linearly independent 
functions on e(u) and ė(u) for every fixed (physically reasonable) value of 
the power n in the viscosity law η = β Σ n. This statement will also be proved 
in a forthcoming paper. The problem with the integral I3(e,ė,n) still 
remains unresolved. It is unclear are the three integrals (considered 
together) I0-(e,ė,n), I0+(e,ė,n) and I3(e,ė,n) linearly independent, or, 
opposite, the later integral can also be expressed as a linear combination of 
I0-(e,ė,n) and I0+(e,ė,n). This matter relates to the main aim of our 
investigations. Namely, to express the dynamical equation (4) as a sum of 
several terms, each factorized as a product of one of these two (or, may be, 
three) linearly independent integrals and coefficients, which are functions 
on e(u), ė(u) and n. The linear independence would imply nullification of 
the coefficients. This leads to splitting of the equation (4) into a system of 
probably more simple differential equations about the unknown function 
e(u).    
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ТЪНКИ ВИСКОЗНИ ЕЛИПТИЧНИ АКРЕЦИОННИ ДИСКОВЕ  
С ОРБИТИ, ИМАЩИ ОБЩА ДЪЛЖИНА НА ПЕРИАСТРОНА. 

V. ЛИНЕЙНИ ЗАВИСИМОСТИ МЕЖДУ УСРЕДНЕНИТЕ  
ПО АЗИМУТАЛНИЯ ЪГЪЛ МНОЖИТЕЛИ  

В ДИНАМИЧНОТО УРАВНЕНИЕ 
 

Д. Димитров 
 

Резюме 
Ние разглеждаме модел на стационарни елиптични 

акреционни дискове, разработен от Любарски и др. [4], които са 
получили обикновено диференциално уравнение от втори ред, 
описващо пространствената структура на тези обекти. Това динамично 
уравнение съдържа седем интеграли, възникващи при азимуталното 
усредняване по протежение на елиптичните орбити на части- 
ците от диска. Те са функции на неизвестното разпределение на 
ексцентрицитета e(u), неговата  производна ė(u) ≡ de(u)/du и степенния 
показател n в закона за вискозитета  η = β Σ n, където u ≡ ln p, p е 
фокалният параметър на конкретната елиптична орбита на частица- 
та. В настоящата статия, ние извеждаме линейни зависмости между 
тези неизвестни интеграли, които могат да бъдат полезни за 
елиминирането на три от тези величини. Възможно е да бъде 
елимиран допълнително още един интеграл, но доказването на това 
твърдение ще бъде отложено в една предстояща статия. Разгледаният 
подход е поддържан с цел да се разцепи динамичното уравнение на 
една система от по-прости диференциални уравнения.   
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Abstract   
We continue the series of papers, devoted to the investigation and simplification of 

the dynamical equation, governing the structure of the stationary elliptical accretion discs. 
These studies are in the frameworks, specified according to the model of Lyubarskij et al. 
[7]. In addition to the previous examinations, we find one more linear relation between the 
coefficients of this second order ordinary differential equation, which enables us to 
eliminate effectively at least four of them. This is in the course of our approach to reduce 
the number of these functions, depending on the eccentricity, its derivative and the power n 
in the viscosity law η = β Σ n. They appear in the equation during the process of averaging 
(i.e. integrating) over the azimuthal angle of the elliptical orbits. At the present stage of the 
investigations, there still remain three integrals of the indicated type. Except the case of 
integer values of n, their analytical solutions are not known. In connection with the linear 
dependence or independence of these functions (this is a subject of our future studies), the 
dynamical equation of the elliptical accretion discs may be split into a system of 
corresponding number of more simple equations about the unknown eccentricities of the 
particle orbits. Such an approach is in accordance with our base line, carried out through 
the referred series of papers, to make a progress, as much as possible, into the solving of 
the task by means of purely analytical methods. And only when the further advance in this 
way (if the final solution is not already attained) is so complicated, that it is impasse, to use 
numerical simulations.     
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1. Introduction 
   

There are numerous observational examples of accretion discs, 
orbiting around one of the components in a binary stellar system. The 
observational evidences, proving the existence of such astronomical objects, 
are based mainly on the accretion processes on to the compact object, 
located at the center of the disc. It may happen that the supply of mass to the 
central object can vary for different physical and geometrical reasons. This 
is possible to occur during the state transitions of the accretion flow or due 
to the variable interactions in the eccentric binary system. Such an activity, 
in principle, is a subject of damping by the viscosity of the disc matter. The 
mass supply on to the primary star (black hole, neutron star, white dwarf) is, 
in the end, determined by the mass supply at the outer disc edge. The 
authors of the investigation [1] compare this physical process for two 
accretion disc models: such as with finite and with infinite sizes. They find 
significant differences between these two cases. Namely, the infinite disc 
solution overestimates the viscous damping. They conclude that, generally 
speaking, the damping becomes very strong when the viscous time at the 
outer edge of the disc turns longer than the modulation time scale [1]. We 
consider the above example, in order to underline how important may be the 
right evaluation even of a single parameter, when we describe the accretion 
flow events. 

The variations of the properties of the accretion discs are subject not 
only to internal changes of their parameters, but also as consequences of 
external influences on the stellar system. The interactions between a “star + 
accretion disc” system and another star will perturb the disc, possibly 
resulting in significant modifications of the disc structure and its physical 
properties. It is suggested that such encounters are capable to trigger 
fragmentation of the disc, to form brown dwarfs or gas giant planets [2]. In 
the later paper are simulated star-star encounters, where the primary star has 
a self-gravitating, marginally stable protostellar disc, and the secondary star 
has not disc. The results of this investigation of the variations of the disc 
structure and its dynamics may be summarized in the following way. The 
stellar encounter is to prohibit the fragmentation, because compressive and 
shock heating stabilizes the disc and the radiative cooling is insufficient to 
trigger the gravitational instability. The conclusions from these simulations 
[2] show, that the encounter strips the outer regions of the disc. This can be 
realized either by tidal tails or by a capture of matter to form a disc around 
the secondary star. As a final result, the interaction triggers a readjustment if 
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the initially existing primary accretion disc turns to such with a steeper 
surface density profile. We conclude from such studies, that accretion discs 
have not only good possibilities to survive the encounters with the other 
stars, but also to preserve their relatively smooth spatial distribution of 
different physical parameters, characterizing the global accretion flow. It is 
worthy to note, that the fractal concepts have recently been introduced in 
the accretion disc theory as a new feature. As pointed out by Roy & Ray [3], 
due to the fractal nature of the flow, its continuity condition undergoes 
modifications. They show (through completely analytical solutions of the 
equilibrium point conditions), that their results give indications, that the 
fractal properties enable the flow to behave like an effective continuum of 
lesser density. The mass accretion rate exhibits a fractal scaling behavior, 
and the entire fractal accretion disc is stable under linearized dynamic 
perturbations. 

As we know, the accretion discs in the binary stellar systems are 
frequently occurred objects and naturally arises the question about the 
relation of the shape of the disc and the eccentricity of the binary orbit. 
Marzari et al. [4] study the evolution of circumstellar massive discs around 
the primary star of a binary system. Especially, they concentrate on the 
computation of the disc eccentricity and its dependence on the binary orbit 
eccentricity. The conclusions are that the self-gravitation of the massive 
discs leads to discs that have (on average) low eccentricity. They establish 
that the orientation of the disc, computed with the standard dynamical 
method, always librates, instead of circulating as in the simulations without 
self-gravitation. The simulations show that the accretion disc eccentricity 
decreases with the binary eccentricity. This result is found also in models 
without self-gravitation. Generally speaking, the investigation [4] is in 
agreement with the statement that the disc self-gravitation appears to be an 
important factor in determining the evolution of the massive accretion discs 
in the binary systems. One additional complicating factor, which possibly 
affects the shape of the accretion flow, is its orientation with respect to the 
spin axis of the central body. Modelling of the overall shape of an accretion 
disc in a semidetached binary system is performed, for example, in the paper 
of Martin et al. [5]. In this investigation, the mass is transferred on to a 
spinning black hole, which spin axis is misaligned with the orbital rotation 
axis of the binary. It is assumed that the accretion disc around the black hole 
is in a steady state. It turns out, that its outer regions are subject to 
differential precession, caused by the tidal torques of the companion star. 
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The later tend to align the outer parts of the disc with the orbital plane. But 
the inner regions of the disc are subject to differential precession caused by 
the general relativity action (Lense-Thirring effect). Such an influence tends 
to align the rotation of the inner parts of the accretion disc with the spin of 
the black hole. There are many other examples, both theoretical and 
observational, illustrating that the disc midplane may be inclined relative to 
the binary orbital plane. Under suitable physical conditions, similar 
geometrical configuration is expected to induce warping and rigid body 
precession of the disc. Fragner & Nelson [6] find that thick discs (with 
aspect ratio = 0.5 and low viscosity parameter α) precess as rigid bodies 
with very little warping or twisting. They are observed to align with the 
binary orbital plane on the viscous evolution time. On the other hand, 
thinner discs with higher viscosity, in which warp communication is less 
efficient, develop significant twists, before to achieve a state of rigid body 
precession. Under the most extreme conditions considered in [6] (with 
aspect ratio = 0.01; α = 0.1 and α = 0.005), it is established that the accretion 
discs can become broken or disrupted by the strong differential precession. 
Discs that become highly twisted are observed to align with the binary 
orbital plane on time scales much shorter than the viscous time scale and, 
possibly, on the precession time [6]. These examples, concerning the 
complicated internal and external interactions in the accretion flows, 
demonstrate some of the difficulties, which may occur, when the shape of 
the disc must be established in a quantitative manner. In the present paper, 
we investigate a particular accretion disc model, having an elliptical shape. 
The trajectories of the disc particles are assumed ad hoc to be ellipses, 
sharing a common longitude of periastron. More precisely, the dynamical 
equation, with which we shall deal, describes and governs the structure of 
the disc in the model developed by Lyubarskij et al. [7], and which 
generalizes the standard α-disc model of Shakura & Sunyaev [8]. These two 
papers do not involve in their considerations strongly magnetized accretion 
flows. Taking into account such a circumstance, it is a matter of interest to 
mention the recent study of Murphy et al. [9], devoted to the large-scale 
magnetic fields in the viscous resistive accretion discs. According to the 
theory of the winds from cold steady-state discs, having near Keplerian 
velocity field, there is a necessity for a large-scale magnetic field at near 
equipartition strength to present. However, as mentioned in [9], this required 
minimum magnetization (for these disc models) has never been tested with 
time dependent simulations. In order to eliminate this omission, Murphy et 
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al. [9] investigate the time evolution of a Shakura-Sunyaev accretion disc 
[8], threaded by a weak magnetic field. Its strength is such that the disc 
magnetization falls off rapidly with the radius. The results lead to the 
conclusion that the large-scale magnetic field introduces only a small 
perturbation to the disc structure and the accretion remains driven by the 
dominant viscous torque. However, their numerical simulations reveal that a 
superfast magnetosonic jet is observed to be launched from the innermost 
regions of the disc and continues to be a stationary event for a long time. 
The main conclusions, following from these numerical simulations, are that 
the astrophysical discs with superheated surface layers could drive 
analogous outflows, even if their midplane magnetization is low. In order 
the accretion process to proceed, the turbulent viscosity must extract a 
sufficient angular momentum. The authors of the investigation [9] conclude 
that the magnetized outflows are no more than byproduct, rather than a 
fundamental driver of the accretion. Nevertheless, if the midplane 
magnetization increases towards the center of the accretion disc, a natural 
transition to an inner jet-dominated disc could eventually be achieved. We 
shall pick out a little more attention to the important process of the angular 
momentum transfer in the accretion flows. 
 

2. Mechanisms of angular momentum transport 
 

It is believed that the microphysical viscosity is too small to produce 
the observed protoplanetary accretion disc lifetimes. Instead of that, it is 
suggested a new approach, based on the turbulent transport. In the later case, 
the turbulent motion takes the place of thermal motion. Though the source 
of such turbulence remains a matter of discussion, this process can provide 
the correct order of magnitude of the observed accretion rates in these 
objects for reasonable surface densities [10]. It may happen that the main 
accretion mechanism is not the turbulent viscosity, as can be seen in the 
situation with the magnetorotational instability. According to the numerical 
simulations performed in [10], the requirement for energy conservation is a 
significant constraint on the accretion driving processes, such as the 
magnetorotational instability. The mechanism of angular momentum 
transport in accretion discs is debated for a long time. In this stream of 
investigations, it should be noted that although the magnetorotational 
instability appears to be a promising explanation of the accretion events, in 
the poorly ionized regions of accretion discs there may not be favorable 
conditions for this instability to operate. In the research [11] is revisited the 
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possibility of transporting angular momentum by thermal convection. There 
is shown that strongly turbulent convection can drive outward angular 
momentum transport at a rate that is (under certain conditions) compatible 
with the observed rate in the discs. The results of Lesur & Ogilvie [11] are 
indicative that convection might be another way to explain global disc 
evolution. Such a scenario will be realistic provided that a sufficiently 
unstable vertical temperature profile can be maintained.  

Another recent research, devoted to the role of magnetic field in the 
angular momentum transport, is performed in the paper [12]. The physical 
situation (advection-dominated accretion flow with a toroidal magnetic 
field) and the geometric configuration (quasi-spherical accretion flow) are 
much different in comparison with the standard disc model of Shakura & 
Sunyaev [8], and also from the model Lyubarskij et al. [7]. Nevertheless, it 
is worthy to note, that the conclusions in [12] may have, to some extent, a 
reference to the former two models. In the research of Khesali & Faghei 
[12] it is assumed that (like in [7] and [8]), the angular momentum transport 
is due to the viscous turbulence and the α-prescription is used for the 
kinematic coefficient of viscosity. In this paper [12], a self-similar solution 
is used, in order to solve the equations that govern the dynamical behaviour 
of the accretion flow. According to the conclusions of Khesali & Faghei 
[12], their solution provides some insights into the dynamics of quasi-
spherical accretion flows and avoids many of the strictures of steady self-
similar solutions. The results in [12] show that the behaviour of the physical 
quantities in a dynamical advection-dominated accretion flow is different 
from that for a steady accretion flow or a disc using a polytropic approach. 
This model also implies that the flow has a differential rotation that is a sub-
Keplerian at small radii and super-Keplerian at large radii. Such different 
results are also obtained if a polytropic accretion flow is used. Also, the 
behaviour of the advection-dominated flows in the presence of a large 
toroidal magnetic field implies that different results are obtained using 
steady-state self-similar models in contrast to the dynamical case. The 
above remarks have to be referred/related (in some conditional and 
restricted sense) to the steady-state case of the model of Lyubarskij et al. 
[7], which dynamical equation we are going to simplify further in the 
present paper. The same note is also significant in view of the fact that the 
classical models [7] and [8] do not involve considerations of large-scale 
magnetic fields. Restricting our attention only to the particular case of 
steady-state elliptical accretion discs with orbits sharing a common 
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longitude of periastron, we shall preliminary eliminate from our treatment 
the more unusual so called “mini-discs”. It is believed that they arise due to 
the accretion on to black holes in wind-fed binaries and collapsars. 
Formation of such small rotating discs is combined with some peculiar 
properties. They accrete on the free-fall time-scale, without the help of the 
viscosity, and, nevertheless, they can have a high radiative efficiency [13]. 
We shall not, of course, apply our results to these inviscid “mini-discs”. In 
principle, in the nature may exist even more “exotic” accretion discs. As 
pointed out by Zhang et al. [14], the temperature of the hot accretion flows 
around black holes is sufficiently high for the ignition of nuclear reactions. 
In the usual studies of the hot accretion flows, the viscous dissipation is 
considered as the only heating mechanism. In the same time, the heating 
caused by nuclear reactions is not considered at all. The calculations of 
Zhang et al. [14] indicate that the energy generation rate of nuclear reactions 
is at most one per cent of the viscous heating. Consequently, they are rather 
not important and the dynamics of the accretion flow can be calculated in 
the usual way, without the need to consider the heating due to the nuclear 
reactions. 
 

3. Definitions and notations 
 

With a view to be more explicit in our further exposition, we shall 
rewrite briefly some of the definitions and notations introduced and used in 
our earlier papers, dealing with the same problem. For more detailed 
descriptions and comments on this theme, the reader is directed to the paper 
([15], section 2) and the references therein. We introduce the independent 
variable u ≡ ln p, where p is the focal parameter of the ellipse, 
approximating the orbit of the considered disc particle. The eccentricity of 
the ellipse is denoted by e ≡ e(u), understanding that the orbits of the 
particles, belonging to different regions of the accretion disc, may, generally 
speaking, have different shapes/elongations. Further we use the notation ė ≡ 
ė(u) ≡ de(u)/du ≡ de/d(ln p) for the ordinary derivative of the eccentricity 
e(u). We shall consider the viscosity law η = β Σ n, with η – viscosity 
parameter, β is a constant, Σ is the surface density of the accretion disc. The 
power n is assumed to be a constant for every examined case. In paper [15] 
are established several linear relations between the following integrals, 
obtained after the averaging over the azimuthal angle φ: 
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                                                         2 π       

(1)        I0-(e,ė,n) ≡ ∫(1 + ecosφ) n – 3[1 + (e – ė)cosφ] – (n + 1) dφ ,  
                                                         0                 

                                                          2 π         

(2)        I0+(e,ė,n) ≡ ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ ,   
                                                          0        

   
                                                   2 π          

(3)        Ij(e,ė,n) ≡ ∫(cosφ)j(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ ;  j = 0,  
                                                       0      

             1, 2, 3, 4.   

In the earlier paper [15], we have shown how the integrals I4(e,ė,n), 
I2(e,ė,n) and I1(e,ė,n) can be expressed through linear relations of the 
integrals I0(e,ė,n), I0-(e,ė,n), and I0+(e,ė,n). Our present aim is to extend this 
approach, finding a linear relation between the last three integrals, namely, 
to determine how I0(e,ė,n) may be written out as a linear combination of I0-

(e,ė,n) and I0+(e,ė,n).  
 

4. Elimination of the integral I0(e,ė,n) 
 

We have already obtained the following relation between the 
integrals I2(e,ė,n), I0(e,ė,n) and I1(e,ė,n) ([15], formula (57)): 
(4)        [e + (n – 1)ė]I2(e,ė,n) = (– e + nė)I0(e,ė,n) – [1 + e(e – ė)]I1(e,ė,n) .   

To resolve the present problem, we begin with an another derivation 
of the integral I2(e,ė,n). As before, we suppose that ne(u)[e(u) – ė(u)] ≠ 0 for 
the considered value of u ≡ ln p. The particular cases, when this condition is 
violated, will be considered separately. According to definition (3):  
                                  2 π                        

(5)        I2(e,ė,n) = ∫cos2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ =  
                                                     0          

                            2 π       
              = ∫(1 – sin2φ)(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ =  
                             0                          

                             2 π           
              = ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  +   
                              0                  

                                                     2 π                
             + (e – ė) – 1∫sinφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) d[1 + (e – ė)cosφ] =   
                                                      0               
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                                                                          2 π              

     = I0(e,ė,n) – [n(e – ė)] – 1∫sinφ(1 + ecosφ) n – 2d{[1 + (e – ė)cosφ] – n } = I0(e,ė,n) –  
                                                                           0            

                                                                                                                                                                     │2 π            
     – [n(e – ė)] – 1{ sinφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n│   –        
                                                                                                                                                               │0              
               2 π 

     –  ∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – ndφ +   
                0            

                                     2 π  

     + (n – 2)e ∫ sin2φ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] – n dφ } =  I0(e,ė,n) + 
                                      0                
                                                2 π          

     + [n(e – ė)] – 1 ∫[1 + (e – ė)cosφ] cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] –  (n + 1)dφ  –   
                                                0             
                                                                    2 π           
      – (n – 2)e[n(e – ė)] – 1∫[1 + (e – ė)cosφ](1 – cos2φ)( 1 + ecosφ) n – 3 ×  
                                                                    0 

      × [1 + (e – ė)cosφ] –  (n + 1)dφ  = I0(e,ė,n) + [n(e – ė)] – 1I1(e,ė,n) + n – 1I2(e,ė,n)  –  
                                                                     2 π              
      – (n – 2)e[n(e – ė)] – 1∫(1 – cos2φ)(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  –   
                                                                     0              
                                                2 π            
      – (n – 2)en – 1 ∫(1 – cos2φ)cosφ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                                                 0                
      = I0(e,ė,n) + [n(e – ė)] – 1I1(e,ė,n) + n – 1I2(e,ė,n)  –  
                                                                    2 π          
      – (n – 2)e[n(e – ė)] – 1∫ (1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  + 
                                                                     0                            
                                                                    2 π               
      + (n – 2)e[n(e – ė)] – 1∫cos2φ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  – 
                                                                      0                            
                                              2 π               
      – (n – 2)en – 1∫cosφ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  +  
                                               0                    
                                     2 π               
      + (n – 2)en – 1∫cos3φ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =   
                                                0                    
      = I0(e,ė,n) + [n(e – ė)] – 1I1(e,ė,n) + n – 1I2(e,ė,n) – (n – 2)e[n(e – ė)] – 1I0-(e,ė,n) +  
      + (n – 2)e[n(e – ė)] – 1[e – 1I1(e,ė,n) – e – 2 I0(e,ė,n) + e – 2 I0-(e,ė,n)]  – 
       –  (n – 2)en – 1[e – 1I0(e,ė,n) – e – 1I0-(e,ė,n)] + 
       + (n – 2)en – 1[e – 1I2(e,ė,n) – e – 2 I1(e,ė,n) + e – 3 I0(e,ė,n) – e – 3 I0-(e,ė,n)] .  
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Computing of the last three integrals in the right-hand-side of the 
above equation is expressed in the next three equalities:  
                       2 π               

(6)        ∫cosφ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                       0 
                                     2 π               

           = e – 1∫(1 + ecosφ – 1)(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                                     0               
           = e – 1I0(e,ė,n) – e – 1I0-(e,ė,n) ,  
                       2 π               

 (7)       ∫cos2φ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                       0                             
                                   2 π               
           = e – 1∫cosφ(1 + ecosφ – 1)(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                                   0                          
           = e – 1I1(e,ė,n) – e – 2 I0(e,ė,n) + e – 2 I0-(e,ė,n) ,  

 

 

                       2 π               

 (8)       ∫cos3φ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                       0                                      
                                   2 π               
           = e – 1∫cos2φ(1 + ecosφ – 1)(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                                    0                          
           = e – 1I2(e,ė,n) – e – 2 I1(e,ė,n) + e – 2 I0(e,ė,n) – e – 3 I0-(e,ė,n) .   
        

After some algebra, the expression (5) gives the following result for 
the integral I2(e,ė,n):   
(9)        n – 1 I2(e,ė,n) = (n – 2)ė(1 – e2)[ne2(e – ė)] – 1I0-(e,ė,n) + 
           + n – 1{ 2 – (n – 2)ė[e2(e – ė)] – 1 } I0(e,ė,n) + 
           + n – 1{ (e – ė) – 1 + (n – 2)ė[e(e – ė)] – 1 } I1(e,ė,n) .    
       Multiplying this equality by ne2(e – ė), we shall obtain:  
(10)     e2(e – ė)I2(e,ė,n) = (n – 2)(1 – e2)ėI0-(e,ė,n) + [2e2(e – ė) – (n – 2)ė]        

I0(e,ė,n) + [e2 + (n – 2)eė] I1(e,ė,n) .   
       This is another linear relation, which enables us (like the equality (4)) to 
eliminate the integral I2(e,ė,n). We shall now check the validity of (10) in 
the cases when the power n, the eccentricity e(u) and its derivative ė(u) may 
vanish separately or simultaneously for some value u ≡ ln p – a situation 
that was preliminary excluded in deriving of (10). 
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4.1. Case n ≠ 0, e(u) = 0, e(u) – ė(u) = 0 => e(u) = ė(u) = 0. 
      

The relation (10) can be written as the equality 0 = 0, i.e., it is right.  
 

4.2. Case n ≠ 0, e(u) = 0, e(u) – ė(u) ≠ 0 => ė(u) ≠ 0. 
 

The equality (10) becomes:  
(11)       0 = (n – 2)ėI0-(0,ė,n) – (n – 2)ėI0(0,ė,n) .  

If n = 2, (11) is trivially fulfilled. If n ≠ 2, after the division of both 
sides by (n – 2)ė, we must prove that I0-(0,ė,n) = I1(0,ė,n). This was already 
done earlier: see equalities (81) and (82) from paper [15]. 
 

4.3. Case n ≠ 0, e(u) ≠ 0, e(u) – ė(u) = 0 => ė(u) = e(u) ≠ 0. 
     

We can write (10) in the following way:   
(12)       0 = (n – 2)(1 – e2)ėI0-(e,ė = e,n) – (n – 2)ėI0(e,ė = e,n) + (n – 1)eėI1(e,ė = e,n) .  
       Dividing by ė ≠ 0, we arrive at the next formula, which we must to 
prove, in order to verify (10) in this particular case: 
(13)       (n – 1)e I1(e,ė = e,n) = (n – 2)I0(e,ė = e,n) – (n – 2)(1 – e2)I0-(e,ė = e,n) .  
       We directly compute that: 
                                                                2 π                                                                     2 π 

(14)       I1(e,ė = e,n) = ∫cosφ(1 + e cosφ) n – 2 dφ =  ∫(1 + e cosφ) n – 2 d(sinφ) =  
                                                                 0                                                                        0             
                                                                                  │2 π                          2 π              
            = sinφ(1 + e cosφ) n – 2│  + (n – 2)e ∫sin2φ(1 + e cosφ) n – 3 dφ =    
                                                                                   │0                              0                                
                                                  2 π                                                                                                              2 π                        
            = (n – 2)e ∫(1 – cos 2φ)(1 + e cosφ) n – 3 dφ =  (n – 2)e ∫(1 + e cosφ) n – 3 dφ  –   
                                                   0                                                                                                                  0            
 

                                                2 π                             
            –  (n – 2) ∫cosφ(1 + ecosφ – 1)(1 + e cosφ) n – 3 dφ = (n – 2)eI0-(e,ė = e,n) –  
                                                 0                  
                                             2 π                                                                                     2 π                         
           – (n – 2) ∫cosφ(1 + e cosφ) n – 2 dφ + (n –2) ∫cosφ(1 + e cosφ) n – 3 dφ =  
                                             0                                                                                         0                   

           = (n – 2)eI0-(e,ė = e,n) – (n – 2)I1(e,ė = e,n) +   
                                                        2 π 

           + (n – 2)e – 1 ∫(1 + ecosφ – 1)(1 + e cosφ) n – 3 dφ =  
                                                          0                    
           = (n – 2)eI0-(e,ė = e,n) – (n – 2)I1(e,ė = e,n) +   
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                                                      2 π                                                                                   2 π                        
           + (n – 2)e – 1 ∫(1 + e cosφ) n – 2 dφ – (n – 2)e – 1 ∫(1 + e cosφ) n – 3 dφ =    
                                                       0                                                                                      0           
           = (n – 2)eI0-(e,ė = e,n) – (n – 2)I1(e,ė = e,n) + (n – 2)e – 1I0(e,ė = e,n) –   
           –  (n – 2)e – 1I0-(e,ė = e,n) .  
       Multiplying  the both sides by e(u) ≠ 0, we obtain the equality (13), and, 
correspondingly, the linear relation (10) is proved.  
 

4.4. Case n = 0, e(u) = 0, e(u) – ė(u) = 0 => e(u) = ė(u) = 0. 
     

The equality (10) may be written as 0 = 0, and it is obviously 
fulfilled.  
 

4.5. Case n = 0, e(u) = 0, e(u) – ė(u) ≠ 0 => ė(u) ≠ 0. 
 

Now (10) becomes: 
(15)       0 = – 2ėI0-(0,ė ,0) + 2ė I0(0,ė ,0) ,  or I0-(0,ė ,0) = I0(0,ė ,0) .  
                                                                                                             2 π                

       This is true, because I0(0,ė ,0) = ∫(1 – ėcosφ) – 1dφ = I0-(0,ė ,0) .  
                                                                                                             0             

 
4.6. Case n = 0, e(u) ≠ 0, e(u) – ė(u) = 0 => ė(u) = e(u) ≠ 0.  
     

The linear relation(10), which must be proved, in this case becomes:  
(16)       0 = – 2(1 – e2)ėI0-(e,ė = e,0) + 2ėI0(e,ė = e,0) – e2I1(e,ė = e,0) .   

We have already computed (formula (70) from [15], multiplied by – 
e2(u) ≠ 0), that in this case we have: 

  

(17)       – e2I1(e,ė = e,0) = e3I0(e,ė = e,0) . 
Taking into account that e(u) = ė(u), we also compute (substituting 

(17) into (16)):  
 

(18)       – 2(1 – e2)eI0-(e,ė = e,0) + 2eI0(e,ė = e,0) + e3I0(e,ė = e,0) =  
             =  – 2(1 – e2)eI0-(e,ė = e,0) + e(2 + e2)I0(e,ė = e,0) .  

For later purposes, we evaluate in an explicit form the integral  
I0(e,ė = e,0), using the formula 858.538 from Dwight [16]: 
                                                                    2 π         

(19)       I0(e,ė = e,0) = ∫(1 + ecosφ) – 2 dφ = 2π[(1 – e2)(1 – e2) 1/ 2] – 1 .   
                                                                    0           

       In the considered case, because ė(u) = e(u), the integral I0(e,ė = e,0) is a 
function only on one independent variable, namely e. We shall differentiate 
this integral with respect to e. Having in mind, that differentiation and 
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integration are linear operations, which sequence of carrying out may be 
interchanged, we write:  
(20)       d I0(e,ė = e,0)/de =(d/de)[2π(1 – e2) – 3/ 2] = 3e(1 – e2) – 12π(1 – e2) – 3/ 2 =  
             = 3e(1 – e2) – 1I0(e,ė = e,0) , 
where we have applied the result (19). From the other hand:  
                                                                                              2 π                                                           2 π 

(21)       d I0(e,ė = e,0)/de = (d/de)∫(1 + ecosφ) – 2 dφ = – 2 ∫cosφ(1 + ecosφ) – 3 dφ =   
                                                                                               0                                                              0           

                                 2 π                                                                                                                2 π 

           = – 2e – 1 ∫(1 + ecosφ – 1)(1 + ecosφ) – 3 dφ =  – 2e – 1 ∫(1 + ecosφ) – 2 dφ +  
                                           0                                                                                                                   0 

                              2 π  
           + 2e – 1 ∫(1 + ecosφ) – 3 dφ = – 2e – 1I0(e,ė = e,0) + 2e – 1I0-(e,ė = e,0) .  
                                      0           

       Combining (20) and (21) gives:    
(22)       – 2e – 1I0(e,ė = e,0) + 2e – 1I0-(e,ė = e,0) = 3(1 – e2) – 1I0(e,ė = e,0) .   
       Multiplication by e(1 – e2) leads to: 
(23)       [– 2(1 – e2) – 3e2]I0(e,ė = e,0) = – 2(1 – e2)I0-(e,ė = e,0) .  
       Another multiplication of the above equality by e(u) ≠ 0 gives that: 
(24)       (2 + e2)eI0(e,ė = e,0) – 2e(1 – e2)I0(e,ė = e,0) = 0 , 
       that means (taking into account the results(17) and (18)) that (16) is 
true, and, consequently, the relation (10) is again proved. 
 

4.7. Case n = 0, e(u) ≠ 0, e(u) – ė(u) ≠ 0.  
     

The linear relation (10) takes the form:  
(25)       e2(e – ė)I2(e,ė,0) = – 2(1 – e2)ėI0-(e,ė,0) + [2e2(e – ė) + 2ė]I0(e,ė,0) +   
             + (e2 – 2eė)I1(e,ė,0) .    

We again shall use the explicit analytical expressions for n = 0, 
derived for the integrals I0-(e,ė,0), I0(e,ė,0), I1(e,ė,0) and I2(e,ė,0) ([17], 
formulas 3a), 3b), 3c) and 3h); see also formulas (48), (49) and (50)in the 
paper [15]). According to the formula 3h) in [17], we are able to write for I0-

(e,ė,0) the following expression:  
(26)       I0-(e,ė,0) = A(e,ė)[2(1 – e2)ė] – 1{ (2e3 – 4e5 + 2e7 – 6e2ė + 10e4ė – 4e6ė + 6eė2 –   
             – 5e3ė2 + 2e5ė2)[1 – (e – ė)2] 1/ 2 – 2(e – ė)3(1 – e2) 5/ 2 } , 
where we have used the notation (47) from paper [15] for A(e,ė): 
(27)       A(e,ė) = 2πė – 2(1 – e2) – 3/ 2[1 – (e – ė)2] – 1/ 2 .    
       Taking into account the expression [50] from the same paper [15]: 
(28)       I2(e,ė,0) = A(e,ė){ (– 1 + e2 + eė)[1 – (e – ė)2]1/ 2 + (1 – e2) 3/ 2 },   
we compute the left-hand-side of the relation (25), which we intent to prove:   
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(29)     e2(e – ė)I2(e,ė,0) = e2(e – ė)A(e,ė){(– 1 + e2 + eė)[1 – (e – ė)2] 1/ 2 + (1 – e2) 3/ 2} = 
           = A(e,ė){ (– e3 + e5 + e2ė – e3ė2)[1 + (e – ė)2] 1/ 2] + e2(e – ė)(1 – e2) 3/ 2 } .  
       Now we begin to evaluate the right-hand-side of (25). That is: 
(30)    – 2(1 – e2)ėI0-(e,ė,0) + [2e2(e – ė) + 2ė]I0(e,ė,0) + (e2 – 2eė)I1(e,ė,0) =  
           = A(e,ė){ (2e3 – 4e5 + 2e7 – 6e2ė + 10e4ė – 4e6ė + 6eė2 – 5e3ė2 + 2e5ė2) × 

           × [1 – (e – ė)2] 1/ 2 – 2(e – ė)3(1 – e2) 5/ 2 } +  
            + A(e, ė)[2e2(e – ė) + 2ė]{ eė[1 – (e – ė)2] 1/ 2 – e(e – ė)(1 – e2)[1 – (e – ė)2] 1/ 2 +  
           + (e – ė)2(1 – e2) 3/ 2 } +  
           + A(e,ė)(e2 – 2eė){ (e – ė – e3)[1 – (e – ė)2] 1/ 2 – (e – ė)(1 – e2) 3/ 2 } =   
           = A(e,ė){ (– 2e3 + 4e5 – 2e7 + 6e2ė – 10e4ė + 4e6ė – 6eė2 + 5e3ė2 – 2e5ė2) ×   
         × [1 – (e – ė)2] 1/ 2 + (2e3 – 2e5 – 6e2ė + 6e4ė + 6eė2 – 6e3ė2 – 2ė3 + 2e2ė3)(1 – e2) 3/ 2 + 
           +  (2e4ė + 2eė2 – 2e3ė2)[1 – (e – ė)2] 1/ 2 + 
           + (2e7 – 2e5 – 2e2ė + 6e4ė – 4e6ė + 2eė2 – 4e3ė2 + 2e5ė2)[1 – (e – ė)2] 1/ 2 + 
            + (2e5 + 2e2ė – 6e4ė – 4eė2 + 6e3ė2 + 2ė3 – 2e2ė3)(1 – e2) 3/ 2 + 
             + (e3 – e5 – 3e2ė + 2eė2 +2e4ė)[1 – (e – ė)2] 1/ 2 + (– e3 + 3e2ė – 2eė2)(1 – e2) 3/ 2 } =  
           = A(e,ė){ (– e3 + e5 – e3ė2 + e2ė)[1 – (e – ė)2] 1/ 2 + (e3 – e2ė)(1 – e2) 3/ 2 } .   
        

This coincides with the right-hand-side of (29). Consequently, the 
relations (25) and (10) are proved also for the case n = 0,  e(u) ≠ 0 and e(u) – 
ė(u) ≠ 0. 

To summarize the situation, we note that we have two linear 
relations between the integrals I2(e,ė,n), I1(e,ė,n), I0(e,ė,n) and I0-(e,ė,n), 
namely, the equalities (4) and (10). They are both valid for arbitrary 
integer/noninteger powers n (we consider physically reasonable values of n 
between – 1 and + 3), arbitrary values of the eccentricity e(u) (provided that 
|e(u)| < 1) and its derivative ė(u) (provided that |e(u) – ė(u)| < 1). To proceed 
further, we shall multiply (4) by e2(e – ė) and also multiply (10) by [e + (n – 
1)ė].  The result is the following:   
(31)       e2(e – ė)[e + (n – 1)ė]I2(e,ė,n) ≡ e2(e – ė)(– e + nė)I0(e,ė,n) –  
               – e2(e – ė)[1 + e(e – ė)]I1(e,ė,n) = [e + (n – 1)ė](n – 2)(1 – e2)ėI0-(e,ė,n) +  
               + [e + (n – 1)ė][2e2(e – ė) – (n – 2)ė]I0(e,ė,n) +  
               + [e + (n – 1)ė][e2 + (n – 2)eė]I1(e,ė,n) .  

The second equality in the above expression gives, in one’s turn, a 
new linear relation between the integrals I1(e,ė,n), I0(e,ė,n) and I0-(e,ė,n):   
(32)       e[– 2e2 – e4 + (– 2n + 4)eė + 2e3ė – (n – 1)(n – 2)ė2 – e2ė2]I1(e,ė,n) =   
               = (n – 2)[eė – e3ė +(n – 1)ė2 – (n – 1)e2ė2]I0-(e,ė,n) +  
               + [3e4 – (n – 2)eė + (n – 5)e3ė – (n – 1)(n – 2)ė2 – (n – 2)e2ė2]I0(e,ė,n) .   
       The derivation of the above result (32) supposes that the both 
multipliers e(e – ė) ≠ 0 and [e + (n – 1)ė] ≠ 0. As already investigated above, 
the vanishing of these two multipliers does not invalidate the relations (4) 
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and (10). Their left-hand-sides will be simply equal to zero. We stress, that 
our purpose in this section 4 is to eliminate the integral I0(e,ė,n) by means of 
the establishment of linear relations between I0(e,ė,n), I0-(e,ė,n) and 
I0+(e,ė,n). Just from this point of view, we shall consider the particular cases 
e(e – ė) = 0 and [e + (n – 1)ė] = 0. Firstly, we shall resolve the problem 
namely for these two particular cases and, after that, we shall return to the 
equality (32).  
 
       4.8.1. Case e(u)[e(u) – ė(u)] = 0, [e(u) + (n – 1)ė(u)] = 0, ė(u) ≠ 0.  
             

The relations (4) and (10) take the forms (having in mind that  
– e = (n – 1)ė ):  
(33)       0 = (2n – 1)ėI0(e,ė,n) – I1(e,ė,n) ,  or    I1(e,ė,n) = (2n – 1)ėI0(e,ė,n),  
(34)       0 = (n – 2)(1 – e2)ėI0-(e,ė,n) – (n – 2)ėI0(e,ė,n) + [e2 + (n – 2)eė]I1(e,ė,n).  
       Combining the above results (33) and (34), we obtain:   
(35)       [(n – 2)ė – (2n – 1)e2ė – (2n – 1)(n – 2)eė2]I0(e,ė,n) = (n – 2)(1 – e2)ėI0-(e,ė,n).  
       As already mentioned above, – e = (n – 1)ė for this particular case, and 
we are able to  write (35) as: 
(36)       ė[(n – 2) – (n – 1)(2n – 1)ė2]I0(e,ė,n) = (n – 2)(1 – e2)ėI0-(e,ė,n).  
       If ė(u) = 0, this equality cannot be used for determination of I0(e,ė,n). 
But if ė(u) ≠ 0, (which is the situation in our case !), we have: 
(37)       [(n – 2) – (n – 1)(2n – 1)ė2]I0(e,ė,n) = (n – 2)(1 – e2)I0-(e,ė,n) .  
       Of course, (37) may be useful only if the multiplier [(n – 2) – (n – 1)(2n 
– 1)ė2] ≠ 0. 
       It is worthy to note, that in the present case, which we consider, the left-
hand-side of the relation (79) from paper [15]: 
(38)       2e(e – ė)I1(e,ė,n) = (n – 2)(e – ė)( 1 – e2)I0-(e,ė,n) +  
              + (n + 1)e[(e – ė)2 – 1]I0+(e,ė,n) + [3e + (n – 2)ė]I0(e,ė,n)   
is also equal to zero. This provides another possibility to exclude the 
integral I0(e,ė,n). That is: 
(39)       [3e + (n – 2)ė]I0(e,ė,n) = – (n – 2)(e – ė)(1 – e2)I0-(e,ė,n) +  
             + (n + 1)e[1 – (e – ė)2] I0+(e,ė,n) .  
       Taking about the present particular case, the equality e(u) = – (n – 
1)ė(u) we express (39) in the form:  
(40)       (2n – 1)ėI0(e,ė,n) = – (n – 2)nė(1 – e2)I0-(e,ė,n) +  
             + (n – 1)(n + 1)ė(1 – n2ė2) I0+(e,ė,n) .  
       If ė(u) = 0, this equality cannot be useful for the determination of 
I0(e,ė,n). But if ė(u) ≠ 0, we have: 
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(41)       (2n – 1)I0(e,ė,n) = – n(n – 2)(1 – e2)I0-(e,ė,n) + (n – 1)(n + 1)(1 – n2ė2) I0+(e,ė,n) .  
 

If (2n – 1) = 0 (i.e., n = 1/2), we are not able to eliminate the integral 
I0(e,ė,n), using the above relation (41). But nevertheless, [(n – 2) – (n – 1) 
(2n – 1)ė2] = n – 2 = – 3/2 ≠ 0, and we may then use (37) to eliminate 
I0(e,ė,n). Consequently, if ė(u) ≠ 0, the linear relations (37) and (41) ensure 
the elimination of I0(e,ė,n) in the case 4.8.1, which particular case implies 
e(u) = – (n – 1)ė(u). We strongly emphasize, that the later equality must not 
be considered, in general, as a first order ordinary differential equation for 
the eccentricity e(u), whose solution is e(u) = constant × exp[ – (n – 1) – 1u]. 
Though such a situation may be (in principle) a subject of special 
investigation. In the present paper, we limit our computations only to 
concrete values u ≡ ln p of the focal parameter p, which are able to cause 
troubles (e.g. singularities) in the derived by us linear relations between the 
seven integrals I0-(e,ė,n), I0+(e,ė,n) and Ij(e,ė,n), (j = 0,1,…,4) (see formulas 
(1), (2) and (3) ). We do not expect that these divergences do scope the 
whole range of the accretion disc. Such a pathological situation would imply 
that the accretion disc model itself is very wrong. So, we consider the 
possible “singular values” of the independent variable u ≡ ln p as isolated 
points or “small” (in some sense) intervals, which do not determine the 
global structure of the accretion flow. 
 

4.8.2. Case e(u)[e(u) – ė(u)] = 0, [e(u) + (n – 1)ė(u)] = 0, ė(u) = 0. 
 

To conclude the considerations in the paragraph 4.8, we return to the 
case ė(u) = 0. By the hypotheses of this paragraph, ė(u) = 0 implies also that 
e(u) = 0. But the situation is now very trivial, simply because 
                                                       2 π       

I0(0,0,n) = ∫dφ = 2π. There does not arise the necessity to represent 
                                                        0                    

the integral I0(0,0,n) by means of a linear combination of the integrals  
I0-(0,0,n) and I0+(0,0,n). It is worthy to note, that in the limits e(u) → 0 and 
ė(u) → 0, the relations (37) and (41) (depending on the condition  n = 1/2 or  
n ≠ 1/2, correspondingly) give the same value 2π for I0(0,0,n), although they 
are derived under the assumption ė(u) ≠ 0. That is an indication for a 
continuous transition of the values of I0(0,0,n) through the “singular” value 
ė(u) = 0. We shall not handle here in a strict mathematical manner this 
circumstance. Out goal is to prove that the integral I0(0,0,n) is possible to be 
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removed from the dynamical equation ([15], equation (4)) of the accretion 
disc.  
 

4.8. Case e(u)[e(u) – ė(u)] = 0, [e(u) + (n – 1)ė(u)] ≠ 0.  
     

We shall prove now that under the above conditions ė(u) cannot be 
equal to zero. If we suppose the opposite, namely that ė(u) = 0, then from 
the second condition [e(u) + (n – 1)ė(u)] ≠ 0 it follows that e(u) ≠ 0. But 
from the first equality we have e(u) – ė(u) = 0, or e(u) = 0. We obtain a 
contradiction. Hence, ė(u) ≠ 0. We shall consider the following subclasses:  
 

4.9.1. Case e(u)[e(u) – ė(u)] = 0, [e(u) + (n – 1)ė(u)] ≠ 0, e(u) = 0. 
 

From [e(u) + (n – 1)ė(u)] ≠ 0 it follows (n – 1)ė(u) ≠ 0. We already 
just proved that ė(u) ≠ 0. Consequently, n ≠ 1, otherwise this case 4.9.1 will 
be inconsistent. The relation (10) reduces to (11) and if n ≠ 2, after dividing 
the both sides of (11) by (n – 2)ė, the result is I0(0,ė,n ≠ 1, 2) = I0-(0,ė,n ≠ 1, 
2). In the case n = 2, we have  
                               2 π           

I0(0,ė,2) = ∫(1 – ėcosφ) – 3 dφ = I0-(0,ė,2). Therefore, for all admissible n  
                                 0         

(i.e., n ≠ 1) we again obtain the equality  

(42)       I0(0,ė,n ≠ 1) = I0-(0,ė,n ≠ 1) .   
 

4.9.2. Case e(u)[e(u) – ė(u)] = 0, [e(u) + (n – 1)ė(u)] ≠ 0, e(u) ≠ 0.  
 

If e(u) ≠ 0, it follows that e(u) = ė(u) ≠ 0. The second condition 
implies that nė(u) ≠ 0. Consequently, we must reject the value n = 0, 
otherwise the case 4.9.2 will be inconsistent. Direct computation shows 
that:  
                                                                                2 π          

(43)       I0(e,ė = e,n ≠ 0) = ∫(1 + ecosφ) n – 2 dφ = I0+(e,ė = e,n ≠ 0) ,  
                                                                                0             

according to the definitions (2) and (3). Of course, the equality  
I0(e,ė = e,n) = I0+(e,ė = e,n) is also true for n = 0, out of the considered 
present case.  

The above analysis again demonstrates the possibility to express the 
integral I0(e,ė,n) in terms of the integrals I0-(e,ė,n) and I0+(e,ė,n), without to 
put in use the earlier eliminated integrals Ij(e,ė,n) (j = 1,2,3,4).  
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4.9. Case e(u)[e(u) – ė(u)] ≠ 0, [e(u) + (n – 1)ė(u)] = 0.  
 

The above conditions impose two restrictions over the power n in the 
viscosity law   η = β Σ n. From the second equality [e(u) + (n – 1)ė(u)] = 0 it 
follows that:  
(44)       e(u) – ė(u) = – nė(u) .  

If n = 0, this will vanish the difference e(u) – ė(u), in contradiction to 
the hypothesis that e(u)[e(u) – ė(u)] ≠ 0. Moreover, if n = 1, the second 
equality also will imply that e(u) = 0, again in contradiction to the first 
requirement. The equality (44) also imposes the requirement ė(u) ≠ 0, to 
avoid vanishing of the difference e(u) – ė(u). Therefore, to avoid 
inconsistency of the case 4.10, we must preliminary exclude the 
possibilities that some of the equalities n = 0, n = 1 and ė(u) = 0 (or 
combinations of them) are appearing. In our consideration, two different 
subclasses must be investigated separately. 
 

4.10.1. Case e(u)[e(u) – ė(u)] ≠ 0, [e(u) + (n – 1)ė(u)] = 0, n ≠ 1/2. 
 

To establish a linear dependence between integrals I0-(e,ė,n), 
I0+(e,ė,n) and  I0(e,ė,n), we shall use the relations (4) and (38), which we 
have already proved to be valid for arbitrary integer/noninteger powers  
n (– 1 ≤ n ≤ + 3), e(u) (|e(u)| < 1) and ė(u) (|e(u) – ė(u)| < 1). In the present 
case [e(u) + (n – 1)ė(u)] = 0, i.e., the left-hand-side of (4) is equal to zero. 
Multiplying (4) by 2e(u)[e(u) – ė(u)] ≠ 0, we obtain:   
(45)      2e(e – ė)(– e + nė)I0(e,ė,n) – [1 + e(e – ė)]2e(e – ė)I1(e,ė,n) =   
             = 2e(e – ė)(– e + nė)I0(e,ė,n) – [1 + e(e – ė)](n – 2)(e – ė)(1 – e2)I0-(e,ė,n) –    
             – [1 + e(e – ė)](n + 1)e[(e – ė)2 – 1]I0+(e,ė,n) –    
             – [1 + e(e – ė)][3e + (n – 2)ė]I0(e,ė,n) = 0,  
where we have applied the equality (38). After some algebra, the second 
equality may be transformed to the next form, representing the linear 
dependence between I0(e,ė,n), I0-(e,ė,n) and I0+(e,ė,n), which we are 
searching for:   
(46)       [3e + 5e3 + (n – 2)ė – (n + 7)e2ė + (n + 2)eė2]I0(e,ė,n) =   
              = (n – 2)( – e + e5  + ė + e2ė – 2e4ė – eė2 + e3ė2)I0-(e,ė,n) +   
              + (n + 1)(e – e5 + e2ė + 3e4ė – eė2 – 3e3ė2 + e2ė3)I0+(e,ė,n) .   
       It is useful to rewrite the relation (45) into another (equivalent to 
(46))form, which will allow us to reveal more clearly the conditions, making 
possible to eliminate I0(e,ė,n) using (45). For this purpose, we employ that 
under the hypothesis, valid for the considered case 4.10, [e(u) + (n – 1)ė(u)] = 0. 
Consequently, we can rewrite (44) in an equivalent form:   
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(47)       e(u) = – (n – 1)ė(u) ,    or    – e(u) = (n – 1)ė(u) , 
in order to eliminate e(u) from (45), obtaining for analysis a more simple 
expression. The result is:  
(48)       (2n – 1)ė[1 + 3n(n – 1)ė2]I0(e,ė,n) =  
              – n(n – 2)ė[1 + n(n – 1)ė2][1 – (n – 1)2ė2]I0-(e,ė,n) –  
              – (n2 – 1)ė[1 + n(n – 1)ė2](n2ė2 – 1)I0+(e,ė,n) .  
       Clearly, ė(u) cancels out (we have already shown at the beginning of the 
case 4.10, that ė(u) cannot be equal to zero). It is also evident that (48) 
cannot be useful if n = 1/2, because its left-hand-side is then equal to zero; 
for this reason, we supposed in the hypotheses of the subclass 4.10.1 that n 
≠ 1/2. It remains to check is it possible that the third multiplier in the left-
hand-side of (48) may happen to be zero for the given value of the argument 
u ≡ ln p, i.e.:   
(49)       1 + 3n(n – 1)ė2(u) = 0     < = >    3ė2(u)n2 – 3ė2(u)n + 1 = 0 .   

From the above equality it is obvious that n(n – 1) < 0, i.e., the 
multipliers n and (n – 1) have opposite signs (remember that n ≠ 0, 1/2 and 
+ 1). Let us consider the two alternative possibilities:  

 ( i ) n < 0 & (n – 1) > 0.   => We obtain a contradiction, because it 
is impossible to have simultaneously n < 0 and n > + 1. 

 ( ii ) n > 0 & (n – 1) < 0   => 0 < n < + 1. Taking into account that n 
≠ 1/2, we conclude that n belongs to the union of the open intervals  
(0,1/2 )U(1/2,1) if the equality (49) holds. We shall use the positivity of n in 
the deriving of the next inequalities.  

Having in mind the equalities (44) and (47) (valid for the case 4.10), 
and the restrictions |e(u)| < 1 and |e(u) – ė(u) | < 1 (valid for any value of u), 
we are able to rewrite them in the following way:   
(50)       n |ė(u)| < 1 ,  
(51)       (1 – n) |ė(u)| < 1 .  

Summation of these two inequalities immediately gives: 
(52)       |ė(u)| < 2 .  

Let us consider (49) as a quadratic equation for the power n. The 
discriminant of this equation is: 
(53)       D = 9ė4(u) – 12ė2(u) ≡ ė4(u)[9 – 12ė – 2(u)] .  

We are seeking only for real solutions of the equation (49), which 
means  that D ≥ 0. Therefore:  
(54)       ė2(u) ≥ 4/3    =>  |ė(u)| ≥ 2/√3 > 1 .  

Combining (52) and (54) leads to the limitations:  
(55)       1 < 2/√3 ≤ |ė(u)| < 2 . 
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The two solutions of the equation (49) are:   
(56)       n1,2 = (6ė2) – 1(6ė2 ± √D ) .  

Strictly speaking, the value n = +1 is already excluded and the 
discriminant D must be positive. Correspondingly, (55) has to be corrected 
as 2/√3 < |ė(u)| . Moreover, n belongs to the union (0,1/2 )U(1/2,1), and if 
we choose in (56) the sign “+”, the solution for n will be greater than +1. To 
avoid the contradiction, we must select the sign “–“. Then the solution of the 
equation (49) is:   
(57)       n = 1 – [1/4 – (3ė2) – 1] 1/ 2 .   

Obviously, n < +1, and the condition n > 0 is also satisfied, because 
ė – 2 > – 9/4 . It seems that there is a possibility to exist a relation between 
ė(u) and the power n belonging to (0,1/2 )U(1/2,1) , namely, the equality 
(57), which implies nullification of the multiplier [1 + 3n(n – 1)ė2(u)] in the 
linear relation (48). We shall now show that such a possibility, in fact, 
cannot be realized. Let us accept that the equality  (49) is realized. We 
compute the common factor [1 + n(n – 1)ė2(u)], which presents in the both 
terms in the right-hand-side of (48).  
(58)       [1 + n(n – 1)ė2(u)] ≡ [1 + 3n(n – 1)ė2(u)] – 2n(n – 1)ė2 = – 2n(n – 1)ė2 ≠ 0,  
because n ≠ 0, +1 and ė(u) ≠ 0. Then the equality (48) takes the form (under 
the condition (49) ):   
(59)       0 = – n(n – 2)[1 – (n – 1)2ė2]I0-(e,ė,n) – (n2 – 1)(n2ė2 – 1)I0+(e,ė,n),  
where a cancellation  by ė[1 + n(n – 1)ė2] ≠ 0 is performed. Expressing ė2(u) 
through the power n, using again (49), we have:  
(60)       ė2(u) = – [3n(n – 1)] – 1 , (remember that in the considered case n 
belongs to the union of the open intervals (0,1/2 )U(1/2,1) ). 

Substitution of this equality into (59) leads to: 
(61)       (n – 2)(4n – 1)I0-(e,ė,n) + (n + 1)( – 4n + 3) I0+(e,ė,n) = 0 .  

At the present stage we shall use a result, which will be proved in a 
forthcoming paper; namely, the integrals I0-(e,ė,n) and I0+(e,ė,n) are linearly 
independent functions on e(u) and ė(u). This is the reason, for which we 
prefer to eliminate the integrals I4(e,ė,n), I2(e,ė,n), I1(e,ė,n) and I0(e,ė,n)  
from the dynamical equation ([15], equation (4)) of the accretion disc, and 
to remain the integrals I0-(e,ė,n) and I0+(e,ė,n). The situation with the 
integral I3(e,ė,n) is at present unclear. The linear independence between  
I0-(e,ė,n) and I0+(e,ė,n) implies that the coefficients before these two 
integrals in the linear relation (61) are identically equal to zero:  
(62)       (n – 2)(4n – 1) = 0     =>      n = 1/4, because n ≠ 2 ,  
(63)       (n + 1)( – 4n + 3) = 0 .   
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           From the later equation (63) we have two different possible solutions: 
(i) n =  – 1, or (ii) n = 3/4. Both they contradict to the solution n = 1/4, 
implied from (62). But (62) and (63) must hold simultaneously. 
Consequently, this controversial situation means that [1 + 3n(n – 1)ė2] 
cannot be equal to zero for any value u ≡ ln p and the possible relation 
between n and ė(u), admitted by the equality (57) also cannot be realized. 
As a final result, we conclude that (2n – 1)ė[1 + 3n(n – 1)ė2] ≠ 0. This closes 
the consideration of the case 4.10.1.  
 

4.10.2. Case e(u)[e(u) – ė(u)] ≠ 0, [e(u) + (n – 1)ė(u)] = 0, n = 1/2.  
 

       We directly compute from the definition (3) (for j = 0) that:   
                                                                                        2 π    

(64)       I0[e = (1/2)ė,ė,1/2] = ∫[1 – (n – 1)ėcosφ] – 3/ 2(1 – nėcosφ) – 3/ 2 dφ =   
                                                                                         0                    

                          2 π                

              = ∫[1 – (ė2/4)cos2φ] – 3/ 2 dφ > 0 ,  
                                0     

where we have used that for n = 1/2 we have e(u) = (1/2)ė(u) (formula (47)) 
and (e – ė) = – nė(u) = – (1/2)ė(u) (formula (44)).  

It is known from the analysis, that the definition of the complete 
elliptic integral of the second kind E(k2) is given by ([16], formula 771.): 
                                                                                  2 π       

(65)       E(π/2, k) ≡ E(k2) = ∫(1 – k2sin2φ) 1/ 2 dφ .  
                                                                                   0          

The condition (55) ensures that (ė2/4) < 1 and then:  
(66)       I0[e = (1/2)ė,ė,1/2] = 2[1 – (ė2/4)] – 1E(ė2/4) +  
             + 2[1 – (ė2/4)] – 1/ 2 E{– (ė2/4)[1 – (ė2/4)] – 1} →  2π .  
                                                                                                                          ė (u) → 0     

We only among the other things show the above formula, in order to 
manifest the existence of an explicit analytical expression for the integral 
I0[e = (1/2)ė,ė,1/2]. We shall not perform here the derivation of the relation 
(66). It turns out, that just this result goes to be of use. In fact, the 
hypotheses, made in the subclass 4.10.2., leads to the conclusion that the 
investigated relation (48) simply transforms to the identity 0 = 0 if n = 1/2 
and e(u) = (1/2)ė(u). Thus, in the considered case, it becomes useless for the 
determination of I0[e = (1/2)ė,ė,1/2]. To see this, let us evaluate the linear 
relation (48) (preliminary canceling out the multiplier ė(u) ≠ 0) in the case 
when n = 1/2: 
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(67)       0 = (3/4)[1 – (1/4)ė2]2 I0-(e,ė,1/2) – (3/4) )[1 – (1/4)ė2]2 I0+(e,ė,1/2) .  
The second inequality (55) |ė(u)| < 2 allows to cancel out the 

multiplier (3/4)[1 – (1/4)ė2]2 ≠ 0. Taking into account (47) for n = 1/2 (i.e., 
e(u) = (1/2)ė(u)), we rewrite (67) as: 
                                                                                       2 π          

(68)       I0-[e = (1/2)ė, ė, 1/2] = ∫[1 – (ė2/4)cos2φ] – 3/ 2[1 + (1/2)ėcosφ] – 1dφ =  
                                                                                        0      

 

                              2 π     

              = ∫[1 – (ė2/4)cos2φ] – 3/ 2[1 – (1/2)ėcosφ] – 1dφ ≡ I0+[e = (1/2)ė,ė,1/2].  
                               0                     

The above result can be also checked if we compute the difference:    
 (69)       I0-[e = (1/2)ė,ė,1/2] – I0+[e = (1/2)ė,ė,1/2] =  
                                        2 π 

              = – ė∫cosφ[1 – (ė2/4)cos2φ] – 5/ 3dφ = 0.   
                                         0           

The later equality is evident from the fact that cos(π + φ) = – cosφ.  
We conclude with the investigation of that particular case, 

corresponding to the nullification of the factorized multiplier e2(e – ė)[e +  
(n – 1)ė]. Now we return to the linear relation (32), which is useful under 
the condition e2(e – ė)[e + (n – 1)ė] ≠ 0. In order to obtain the factor 2e(e – 
ė)I1(e,ė,n), we multiply (32) by 2(e – ė). In this way, we shall get as a factor 
the left-hand-side of the relation (38), i.e. we use (38) to eliminate the 
integral I1(e, ė, n). The final result is a linear relation only between the 
integrals    I0(e,ė,n), I0-(e,ė,n) and I0+(e,ė,n):   

 

(70)       [– 2e2 – e4 + (– 2n + 4)eė + 2e3ė – (n – 1)(n – 2)ė2 – e2ė2] ×  
              × (n –2)(e – ė)(1 – e2)I0-(e,ė,n) +  
              + [– 2e2 – e4 + (– 2n + 4)eė + 2e3ė – (n – 1)(n – 2)ė2 – e2ė2] ×  
              × e(n + 1)[(e – ė)2 – 1]I0+(e,ė,n) +  
              + [– 2e2 – e4 + (– 2n + 4)eė + 2e3ė – (n – 1)(n – 2)ė2 – e2ė2] ×  
              [3e + (n – 2)ė]I0(e,ė,n) =  
              = 2(n – 2)(e – ė)[eė – e3ė + (n – 1)ė2 – (n – 1)e2ė2]I0-(e,ė,n) +  
              + 2(e – ė)[3e4 – (n – 2)eė + (n – 5)e3ė – (n – 1)(n – 2)ė2 –  
              – (n – 2)e2ė2]I0(e,ė,n) . 
   

After some algebra, the above equality may be put into a form, 
which represents I0(e,ė,n) as a linear combination of the integrals I0-(e,ė,n) 
and I0+(e,ė,n):  
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 (71)      [6e3 + 9e5 + 6(n – 2)e2ė + 3(n – 8)e4ė + 3(n – 1)(n – 2)eė2 – 3(2n – 7)e3ė2 +  
               + n(n – 1)(n – 2)ė3 + 3(n – 2)e2ė3]I0(e,ė,n) = (n –2)[ – 2e3 + e5 + e7 – 2(n – 2)e2ė +  
               + (2n – 1)e4ė – 3e6ė + (– n2 + 3n – 2)eė2 + (n2 – 3n – 1)e3ė2 + 3e5ė2 + n(n – 1)ė3 + 
               + (– n2 + n + 1)e2ė3 – e4ė3]I0-(e,ė,n) + (n + 1)[2e3 – e5 – e7 + 2(n – 2)e2ė –  
               – 2(n – 3)e4ė + 4e6ė + (n – 1)(n – 2)eė2 + (– n2 + 7n – 11)e3ė2 – 6e5ė2 +  
               + 2(n – 2)2e2ė3 + 4e4ė3 – (n – 1)(n – 2)eė4 – e3ė4]I0+(e,ė,n) ≡   
               ≡ (n – 2)(1 – e2)(e – ė)[– 2e2 – e4 – 2(n – 1)eė + 2e3ė – n(n – 1)ė2 – e2ė2]I0-(e,ė,n) + 
               + (n + 1)[1 – (e – ė)2]e[2e2 + e4 + 2(n – 2)eė – 2e3ė + (n – 1)(n – 2)ė2 + e2ė2] ×   
               × I0+(e,ė,n).  

 

This is the linear relation for which we are seeking. Clearly, it may 
be relevant to the problem of the elimination of I0(e,ė,n), only if the 
multiplier before this integral is different from zero. The investigation of the 
case when this does not happen is much more complicated than the situation 
with the other integrals. We shall not investigate in the present paper the 
possible ineligibility to apply formula (71). We only illustrate graphically 
(Fig. 1) for two concrete numerical values of the power n (n = +2.4 and n = 
– 0.4) that such a trouble really exists. 

 

Fig. 1. Two graphics of the coefficient D0(e,ė,n) ≡ 6e3 + 9e5 + 6(n – 2)e2ė + 3(n – 8)e4ė + + 
3(n – 1)(n – 2)eė2 – 3(2n – 7)e3ė2 + n(n – 1)(n – 2)ė3 + 3(n – 2)e2ė3 for two different 

(arbitrary chosen) values of the power n; top: n = + 2.4 and down: n = – 0.4. Both e(u) and 
ė(u) take values from – 0.99 to + 0.99 . 

 
5. Conclusions and comments 
   

The last paragraph 4 of the present investigation, in combination 
with the results in the earlier paper [15], clearly demonstrate that between 
the seven integrals Ik(e,ė,n), (k = 0-, 0+, 0, 1, 2, 3, 4) exist linear relations, 
which ensure the opportunity to eliminate four of them in the dynamical 
equation ([15], equation (4)), governing the space structure of the stationary 
elliptical accretion discs, according to the model of Lyubarskij et al. [7]. 
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More concretely, we are able to express the integrals I4(e,ė,n), I2(e,ė,n), 
I1(e,ė,n) and I0(e,ė,n) only by means of the integrals I0-(e,ė,n) and I0+(e,ė,n) 
(see definitions (1), (2) and (3)). It turn outs, that the later two integrals I0-

(e,ė,n) and I0+(e,ė,n) are linearly independent functions of the eccentricity 
e(u) and its derivative ė(u) ≡ de(u)/du for each orbit of the disc particles. 
This statement is quoted in advance and its proof will be given in a 
forthcoming paper. In such a way, the dynamical equation may be set free 
from some of the above cited integrals, appearing as a consequence of the 
azimuthal-angle averaging under the derivation of the dynamical equation in 
the research of Lyubarskij et al. [7]. This gives some simplification of this 
equation and may be eventually useful for a finding of its solution by means 
of analytical methods. Concerning the integral I3(e,ė,n), until now, we are 
not in a condition to eliminate it through the other integrals, using only 
linear relations. The availability of a linear dependence or independence 
between I0-(e,ė,n), I0+(e,ė,n) and I3(e,ė,n) will be a subject of a forthcoming 
analysis. It also remains to establish the utmost limits, under which we shall 
be able to attain, in our attempts to solve the dynamical equation of the 
elliptical disc by purely analytical methods. It is possible that this approach 
may turn out to be only partially successful. We hope that even in this less 
optimistic situation, the obtained analytical results will be useful for the 
more clear interpretation both of the intermediate calculations and the 
further necessary numerical simulations, leading to the finding of the final 
solution itself. Most probably, (and unfortunately), it seems that our 
simplifications of the dynamical equation, governing the space structure of 
the stationary elliptical discs ([15], equation (4) and references therein), will 
be relevant essentially only to the model of Lyubarskij et al. [7]. Other, 
much more complicated, and more realistic model of elliptical accretion 
discs, is developed by Ogilvie [18]. There are considered complex-valued 
eccentricities of the particle orbits. This mathematical approach allows to 
overcome the restriction of orbits sharing only a common longitude of 
periastron (i.e. all apse lines of the orbits are in line with each other), which 
limitation is an essential feature of the examined by us model of Lyubarskij 
et al. [7]. Unlike the later 2-dimensional analytical simulation, in the full 
model of Ogilvie ([18], section 3), the basic equations, governing the fluid 
disc, are written in 3 dimensions. In the case of elliptical discs of Lyubarskij 
et al. [7], the structure of the accretion flow is prescribed by one ordinary 
differential equation, while in the paper of Ogilvie ([18], section 4.4) a 
system of four ordinary differential equations must be solved. We have to 
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take into account, that the theory, presented in [18], goes considerably 
beyond the previous analytical treatments of the eccentric discs. 
Consequently, we have to expect that the mathematical treatment of the 
problem will require (in principle) more complicated ways, in order to solve 
the structure and the dynamics of the elliptical discs. Of course, resolving 
the more simple case, described in [7], we hope that at least some of the 
established properties will be presented also (in some sense) in the real 
discs, observed in the nature. It will be also useful even for the process of 
formulation of the more realistic accretion discs models, approaching the 
characteristics of these objects, investigated by the methods of the 
observational astronomy. It is clear, that including the considerations of new 
details or more precisely described processes (for example, including the 
vertical motions in the disc), will give a better agreement between the 
theories and observations. But working out of models, like that of 
Lyubarskij et al. [7], which are not very much appropriate to approximate 
the really existing accretion flows, indicated by the astronomical 
observations, is nevertheless an unavoidable step in the direction of their 
more complete and perfect understanding.   
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ТЪНКИ ВИСКОЗНИ ЕЛИПТИЧНИ АКРЕЦИОННИ ДИСКОВЕ  
С ОРБИТИ, ИМАЩИ ОБЩА ДЪЛЖИНА НА ПЕРИАСТРОНА. 

VI. OПРОСТЯВАНЕ НА ДИНАМИЧНОТО УРАВНЕНИЕ 
       

Д. Димитров 
 

Резюме 
         Ние продължаваме серията от статии, посветени на изследването 
и опростяването на динамичното уравнение, определящо структурата 
на стационарните елиптични акреционни дискове. Тези проучвания са 
в рамките, определени от модела на Любарски и др. [7]. В добавка към 
предишните проучвания, ние намираме още една зависимост между 
коефициентите на това обикновено диференциално уравнение от втори 
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ред, което ни дава възможност да елиминираме ефективно най-малко 
четири от тях. Това е в курса на нашия подход да намалим броя на тези 
функции, зависещи от ексцентрицитета, неговата производна и 
степенния показател n в закона за вискозита η = β Σ n. Те се появяват в 
уравннието в течение на процеса на усредняване (т.е., при 
интегрирането) по азимуталния ъгъл на елиптичните орбити. На 
сегашния стадии на изследванията, остават все още три интеграла от 
указания тип. С изключение на случая на целочислени стойности на n, 
техните аналитични решения не са известни. Във връзка с линейната 
зависимот или независимост на тези функции (това е предмет на 
нашите бъдещи проучвания), динамичното уравнение на елиптичните 
акреционни дискове може да бъде разцепено на една система от 
съответстващ брой по-прости уравнения за неизвестните 
ексцентрицитети на орбитите на частиците. Такъв един подход е в 
съответствие с нашата основна линия, прекарвана през споменатата 
серия от статии, да се постигне колкото се може по-голям прогрес в 
решаването на задачата с помощта на чисто аналитични методи. И 
само когато по-нататъшният напредък по този способ (ако крайното 
решение не е вече достигнато) става толкова сложен, че се оказва в 
безизходно положение, чак тогава да се използват числените 
моделирания.   
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Abstract 
The recent Cosmic Microwave Background (CMB) experiments have shown that 

the average density of the universe is close to the critical one and the universe is 
asymptotically flat (Euclidean). Taking into account that the universe remains flat and the 
total density of the universe Ω0 is conserved equal to a unit during the cosmological 
expansion, the Schwarzschild radius of the observable universe has been determined equal 

to the Hubble distance 1
2

~
2  cHR

c

GM
Rs , where M is the mass of the observable 

universe, R is the Hubble distance and H is the Hubble constant. Besides, it has been shown 
that the speed of the light c appears the parabolic velocity for the observable universe 

pv
R

GM
c 

2
 and the recessional velocity Hrvr   of an arbitrary galaxy  at a 

distance r  > 100 Mps from the observer, is equal to the parabolic velocity for the sphere, 
having radius r and a centre, coinciding with the observer. The requirement for 
conservation of 10   during the expansion enables to derive the Hoyle-Carvalho formula 

for the mass of the observable universe kg
GH

c
M 53

3

10~
2

  by a new approach.  

 
 

1. Introduction 
 

The problem for the average density of the universe   acquired 
significance when it was shown that the General Relativity allowes to reveal 
the large-scale structure and the evolution of the universe by simple 
cosmological models [1-3]. Crucial for the geometry of the universe appears 
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the dimensionless total density of the universe 
c


0 , where   is the 

average density of the universe and c  is the critical density of the universe. 

In the case of 10   (open universe) the global spatial curvature is negative 

and the geometry of the universe is hyperbolic and in the case of 10   

(closed universe) the curvature is positive and the geometry is spherical. In 
the special case of 10   (flat universe) the curvature is zero and the 

geometry is Euclidean. Until recently scarce information has been available 
about the density and geometry of the universe. The most reliable 
determination of the total density 0  is by measurements of the dependence 

of the anisotropy of the Cosmic Microwave Background (CMB) upon the 
angular scale. The recent results have shown that 00 1  , where the 

error 0  decreases from 0.10 [4, 5] to 0.02 [6]. The fact that 0  is so 

close to a unit is not accidental since only at 10   the geometry of the 

universe is flat (Euclidean) and the flat universe was predicted by the 
inflationary theory [7]. The total density 0  includes densities of baryon 

matter 05.0b , cold dark matter 22.0c [8] and dark energy 

73.0 , producing an accelerating expansion of the universe [9, 10]. The 

found negligible CMB anisotropy 510~ 

T

T
 indicates that the early 

universe has been very homogeneous and isotropic [11]. Three-dimensional 
maps of the distribution of galaxies corroborate homogeneous and isotropic 
universe on large scales greater than 100 Mps [12, 13]. 

 
2. Consequences from conservation of the total density of the 

universe during the expansion 
 

The flat geometry of the universe allows to solve some cosmological 
problems in the Euclidean space. The finite time of the cosmological 
expansion 1H (age of the universe) and the finite speed of the light c set a 
finite particle horizon 1~ cHR  beyond which no material signals reach the 
observer. Therefore, for an observer in an arbitrary location, the universe 
appears a three-dimensional, homogeneous and isotropic sphere having 
finite “radius” (particle horizon) equal to the Hubble distance 1~ cHR , 
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where H ≈ 70 km s-1 Mps-1 [14] is the Hubble constant and 1H  1.371010 
years is the Hubble time (age of the universe). 

 

The fact that the total density of the universe 0  is close to a unit is 

fundamental since only 10 
c


 supplies flat geometry of the universe. 

There are no arguments to assume the recent epoch privileged in relation to 
the other epochs; therefore, the universe always remains flat, and the total 
density of the universe Ω0 is conserved equal to a unit during the 
cosmological expansion: 

 

(1) 10 
c


 

 

The critical density of the universe [15] is determined from equation 
(2): 
 

(2) 
G

H
c 


8

3 2

  ≈ 9.510-27 kg m-3, 

 

where G is the universal gravitational constant. 
 

Considering 
34

3

R

M


  , where M and R are the mass and the Hubble 

distance (“radius”) of the observable universe, and replacing c  with 

expression (2) in (1) we obtain: 
 

(3) 1
2

23


HR

MG
 

 

Replacing 1~ cRH  in (3) we obtain: 
 

(4) 
2

2

c

GM
R   

Obviously, (4) appears the formula for the Schwarzschild radius of 
the mass of the observable universe M [16]. Therefore, the Schwarzschild 
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radius of the observable universe sR  is equal to the Hubble distance 
1~  cHRRs  ~ 1.371010 light years. 

 
From (4) we find: 

 

(5) 
R

GM
c

2
  

 

Evidently, (5) is the formula of the parabolic velocity for the Hubble 
sphere, i.e. the sphere having mass M and a radius, equal to the Hubble 
distance 1~ cHR . Therefore, the speed of the light c appears the parabolic 
velocity pv  for the observable universe. 

Below, we find that the recessional velocity Hrvr   of an arbitrary 
galaxy at a distance r > 100 Mps from the observer is equal to the parabolic 
velocity of a sphere, having radius r and a centre, coinciding with the 
observer. As mentioned at the end of the Introduction, the universe is 
homogeneous and isotropic on large scales greater than 100 Mps. Therefore, 
the average density r  of a sphere having radius r > 100 Mps is equal to the 
average density of the universe  : 

 

(6) 
G

H

r

m
cr 





8

3

4

3 2

3
 , 

 

where m is the mass of the total matter in the sphere. 
 

We find from equation (6): 
 

(7) 
3

2

r

Gm
H   

 

Replacing H in the Hubble law Hrvr   we obtain the recessional 
velocity of a galaxy: 

 

(8) 
r

Gm
Hrvr

2
  
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Equation (8) coincides with the formula for the parabolic velocity of 
a sphere, having radius r and a centre, coinciding with the observer. 

Finally, the requirement for conservation of the total density of the 
universe equal to a unit during the expansion allows to estimate the total 
mass of the observable universe M. Actually, replacing 1~ cHR  in (3) we 
find: 

 

(9) 
GH

c
M

2

3

  ≈ 8.81052 kg 

 

Obviously, this mass is close to the mass of the Hubble sphere HM : 
 

(10) 
GH

c

H

c
RM c

H 23

4
~

3

4 3

3

3
3 

  

 

Formula (9) has been derived independently by dimensional analysis 
without consideration of the average density of the universe in [17, 18] and 
practically coincides with the Hoyle-Carvalho formula for the mass of the 
universe [19, 20], obtained by a totally different approach. 

 
3. Conclusions 

 

The recent CMB experiments have shown that the average density of 
the universe is close to the critical one and the universe is asymptotically 
flat. The flat geometry of the universe allows to solve some cosmological 
problems in the Euclidean space. Taking into account that the universe 
remains flat and the total density of the universe Ω0 is conserved equal to a 
unit during the expansion, the Schwarzschild radius of the observable 
universe has been determined equal to the Hubble distance 

1
2

~
2  cHR

c

GM
Rs , and the speed of the light c appears the parabolic 

velocity for the observable universe pv
R

GM
c 

2
. Besides, the 

recessional velocity Hrvr   of an arbitrary galaxy at a distance r  > 100 
Mps from the observer, is equal to the parabolic velocity of a sphere, having 
radius r and a centre, coinciding with the observer. 
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The requirement for conservation of 10   during the cosmological 

expansion enables to derive the Hoyle-Carvalho formula for the mass of the 

observable universe 
GH

c
M

2

3

  by a new approach. 
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ПОСЛЕДИЦИ ОТ ЗАПАЗВАНЕТО НА ТОТАЛНАТА 
ПЛЪТНОСТ НА ВСЕЛЕНАТА ПРИ РАЗШИРЯВАНЕТО 

 
Д. Вълев 

 
Резюме 

Съвременните изследвания на космическия микровълнов фон 
показват, че средната плътност на Вселената е близка до критичната, а 
Вселената е асимптотически плоска (Евклидова). Вземайки под 
внимание това, че Вселената остава плоска, а тоталната плътност на 
Вселената Ω0 се запазва равна на единица при космологичното разши-
ряване, е установено че Шварцшилдовият радиус на наблюдаемата 

Вселената е равен на разстоянието на Хъбъл 1
2

~
2  cHR

c

GM
Rs , 

където M е масата на наблюдаемата Вселена, R е разстоянието на 
Хъбъл, а H е константата на Хъбъл.  

Освен това е показано, че скоростта на светлината c се явява 

параболична скорост за наблюдаемата Вселена pv
R

GM
c 

2
, a ско-

ростта на отдалечаване Hrvr   на произволна галактика на разстояние 
r  > 100 Мпс от наблюдателя, е равна на параболичната скорост за 
сферата, имаща радиус r и център съвпадащ с наблюдателя. 
Изискването за запазване на 10   при космологичното разширяване 

дава възможност да се изведе формулата на Хойл-Карвальо за масата 

на наблюдаемата Вселена kg
GH

c
M 53

3

10~
2

  по нов начин. 
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Abstarct 
The dimensional analysis has been carried out by means of three fundamental 

constants - the speed of the light in vacuum (c), the universal gravitational constant (G) 
and the Hubble constant (H). The mass dimension quantity )/(~ 3 GHcm  ~ 1053 kg, 

derived by this approach, practically coincides with Hoyle-Carvalho formula for the mass 
of the observable universe, obtained by a totally different approach. It has been shown that 
this value is close to the mass of the Hubble sphere. Besides, by dimensional analysis it has 
been found that the total density of the universe, including the dark matter and the dark 
energy, is of the order of a magnitude of the critical density of the 
universe 262 10~/~ cGH   kg m-3. 

 
Key words: dimensional analysis; fundamental constants; mass of the universe; total 

density of the universe 
 
 

1. Introduction 
 

The observable universe consists of the galaxies and other matter 
that we can in principle observe from Earth in the present day, because light 
(or other signals) from those objects has had time to reach us since the 
beginning of the cosmological expansion. Because the universe is 
homogeneous and isotropic in large scale, the distance to the edge of the 
observable universe is roughly the same in every direction. Therefore, the 
observable universe is a three dimensional sphere centered on the observer. 
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Until recently scarce information has been available concerning the 
mass, density and geometry of the universe. Recent observations have 
shown that the average density of the bright matter (stars, galaxies, quasars, 
etc.) is less than 1 % of the critical density of the universe c  [1]. 

 

(1) 
G

H
c 


8

3 2

  ≈ 10-26 kg m-3 

 

On other side, the rotational curves of spiral galaxies [2] and the 
stability of rich clusters of galaxies [3] infer total density of the matter 

25.0~/ cMM  , in units of the critical density c . According to the 

Big Bang Nucleosynthesis, the density of the ordinary (baryonic) matter is 
05.0B  [4], whereas the density of the cold dark matter 20.0C  [5]. 

The most trustworthy total matter density c /0   has been 

determined by measurements of the dependence of the anisotropy of the 
Cosmic Microwave Background (CMB) upon the angular scale. The recent 
observations show that  10 , where the error 02.0  [6, 7], i.e. 

the density of the universe is close to the critical one and the universe is 
asymptotically flat (Euclidean). Recent distant SNeIa observations have 
shown accelerating expansion of the universe produced by the dark energy, 
possessing density 70.0  [8 – 11]. Therefore, the bulk of density of the 
universe consists from dark energy and cold dark matter 

10  CB . 

In this paper we have shown that the mass and density of the 
observable universe can be estimated by dimensional analysis using the 
fundamental constants – the speed of the light in vacuum (c), the 
gravitational constant (G) and the Hubble constant (H), without any 
information for the total density of the universe. 

The dimensional analysis is a conceptual tool often applied in 
physics to understand physical situations involving certain physical 
quantities [12 – 14]. It is routinely used to check the plausibility of the 
derived equations and computations. When it is known, the certain quantity 
with which other determinative quantities would be connected, but the form 
of this connection is unknown, a dimensional equation is composed for its 
finding. In the left side of the equation, the unit of this quantity 0q  with its 

dimensional exponent has been placed. In the right side of the equation, the 
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product of units of the determinative quantities iq  rise to the unknown 

exponents in , has been placed  
inn

i
iqq 

1
0 ~][ , where n is positive integer 

and the exponents in  are rational numbers. Most often, the dimensional 

analysis is applied in mechanics and other fields of modern physics, where 
there are many problems with a few determinative quantities. Many 
interesting and important problems related to the fundamental constants 
have been considered in [15 – 17]. 

The discovery of the linear relationship between recessional velocity 
of distant galaxies, and distance v = Hr [18] introduces new fundamental 
constant in physics and cosmology – the famous Hubble constant (H). 
Hubble constant determines the age of the universe 1H , the Hubble 
distance 1cH , the critical density of the universe c , and other large-scale 

properties of the universe. Because of the importance of the Hubble 
constant, in the present paper we include H in the dimensional analysis. 
Thus, the Hubble constant will represent the cosmological phenomena in 
new derived fundamental mass. According to the recent cosmology, the 
Hubble ‘constant’ slowly decreases with the age of the universe, but there 
are indications that other constants, especially gravitational and fine 
structure constants also vary with time [19, 20]. That is why, the Hubble 
constant could deserve being treated on an equal level with the other 
constants.  

 
2. Estimation of total mass of the observable universe by 

dimensional analysis 
 

The Plank mass 
G

c
mP


~  has been derived from Planck [21] by 

dimensional analysis using the fundamental constants – c, G and the 
reduced Plank constant ( ). Since the constants c, G and   represent three 
very basic aspects of the universe (i.e. the relativistic, gravitational and 
quantum phenomena), the Plank mass appears to a certain degree a 
unification of these phenomena. The Plank mass have many important 
aspects in modern physics. One of them is that the energy equivalent of 
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Planck mass 
G

c
cmE PP

5
2 ~


  ~ 1019 GeV appears as unification energy 

of the fundamental interactions [22]. 
Analogously, we seek a mass dimension quantity m composed from 

the fundamental constants – the speed of the light (c), the gravitational 
constant (G) and the Hubble constant (H), using dimensional analysis. Here 
we replace Planck constant with Hubble constant assuming that the quantum 
phenomena described by   are negligible in relation to the cosmological 
phenomena described by H. Consequentially, so we can write equation (2):  

 

(2) 321 nnn HGkcm  , 
 

where n1, n2 and n3 are unknown exponents to be determined by 
matching the dimensions of both sides of the equation and k is 
dimensionless parameter of the order of magnitude of unit. Using the 
symbol L for length, T for time, M for mass, and writing "[x]" for the 
dimensions of some physical quantity x, we have the following: 

 

(3) 
1

231

1

][

][

][













TH

TLMG

LTc

  

 

The dimensions of the left and right sides of the equation (2) must be 
equal. Therefore: 

 

(4) 321 ][][][][ nnn HGcm    
 

Taking into account the dimensions of quantities in formula (4) we 
obtain: 

 

(5) 232121321 2311231100 )()()( nnnnnnnnn MTLTMTLLTMTL     
 

We find the system of linear equations from (5): 
 

(6) 

1

02

03

2

321

21






n

nnn

nn
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The determinant   of the system is: 
 

(7) =

010

121

031


  = 1   

 

The determinant 0 . Therefore, the system has an unique 
solution. We find this solution by Kramer’s formulae (8): 

 

(8) 
















3
3

2
2

1
1

n

n

n

, 

 
where  Δ1 = – 3, Δ2 = 1 and Δ3 = 1. 

 

Therefore, the exponents 1,1,3 321  nnn . Replacing obtained 

values of exponents in equation (2) we find formula (9) for the mass 1m : 
 

(9) 
GH

c
m

3

~   

 

First of all, the formula (9) has been derived by dimensional analysis 
in [23]. This formula is close to the Hoyle formula [24] for the mass of the 
universe )2/(3 GHcM   and perfectly coincides with Carvalho formula 

[25] for the mass of the universe )/(~ 3 GHcM , obtained by totally 
different approaches, Steady State Theory [26] and Large Number 
Hypothesis, respectively [19]. 

The strict linearity of the Hubble law has been confirmed in [27] by 
SNeIa observations. The Hubble sphere is the sphere where the recessional 
velocity of the galaxies is equal to the speed of the light in vacuum c, and 
according to the Hubble law v = c when 1 cHr . Thus, the Hubble sphere 
appears a three-dimensional sphere, centered on the observer, having radius 

1 cHr  and density c  . Therefore, the mass of the Hubble sphere is: 
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 (10) 
GH

c

G

H

H

c
rM cH 28

3

3

4

3

4 32

3

3
3 


   

 

Obviously, the mass of the Hubble sphere (10) coincides with the 
Hoyle formula for the mass of the universe and differs from formula (9) 
with dimensionless parameter k = ½  ~ 1. 

The recent experimental values of c, G and H are used – c = 299 792 
458 m s-1 , G = 6.67310-11 m3 kg-1 s-2 [28] and H ≈ 70 km s-1 Mps-1 [29]. 
Replacing this values in (9) we obtain m ~ 1.761053 kg. Therefore, the 
enormous mass )/(~ 3 GHcm  would be identified with mass of the 
observable universe. Strictly speaking, the size of the observable universe 
determines from the cosmological horizon and depends from cosmological 
model, yet the former roughly coincides with Hubble distance. 

 
3. Estimation of total density of the observable universe by 

dimensional analysis 
 

Analogously, a quantity ρ having dimension of density could be 
composed by means of the fundamental constants c, G and H: 

 

(11) 321 nnn HGkc , 
where k is a dimensionless parameter of the order of magnitude of 

unit. 
 

By dimensional analysis, we find the system of linear equations: 
 

(12) 

1

02

33

2

321

21






n

nnn

nn

  

The determinant of the system is   = – 1 ≠ 0. Therefore, the system 
has a unique solution, which we obtain by the Kramer’s formulae again: 

 

(13) 

2

1

0

3
3

2
2

1
1



















n

n

n

  



 

 73 

Replacing obtained values of the exponents in equation (11) we find 
formula (14) for the density ρ: 

 

(14) 
G

H 2

~  ≈ 7.9310-26 kg m-3  

 

As mentioned in Section 1, the recent Cosmic Microwave 
Background (CMB) observations have shown that the total density of the 
universe   is close to the critical density c : 

(15) 
G

H
cc 


8

3 2

  ≈ 10-26 kg m-3  

 

It deserves to note that the formula (14) correctly determines the 
dependence of the total density of the universe on the Hubble and 
gravitational constants. Besides, the density ρ derived by means of the 
fundamental constants c, G and H coincides with formula (15) for the total 
density of the universe with accuracy to a dimensionless parameter 

)8/(3 k of the order of a magnitude of a unit. 
The formula (14) could be derived by means of other set of 

fundamental constants, namely ( , G, H). Actually, a quantity ρ having 
dimension of density could be composed by means of the fundamental 
constants  , G and H: 

 

(16) 321 nnn HGk , 
where k is a dimensionless parameter of the order of magnitude of 

unit. 
By dimensional analysis, we obtain the respective system of linear 

equations: 
 

(17) 

1

02

332

21

321

21






nn

nnn

nn

  

 

The determinant of the system   = – 5 ≠ 0 and the system have a 
solution coinciding with the solution of the system (12): 
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(18) 

2

1

0

3
3

2
2

1
1



















n

n

n

  

 

Replacing the exponents in (16) we again obtain equation (14) for 
the total density of the universe. Therefore, the mass dimension quantity 
composed by means of the set of fundamental constants ( , G, H) coincides 
with equation (14) found by means of the set of constants (c, G, H). Thus, 
the dimensional analysis automatically rejects inappropriate determinative 
quantities from the equations, such as c and  in the above examined cases. 

 
4. Conclusions 

 

The dimensional analysis has been carried out by means of three 
fundamental constants - the speed of the light in vacuum (c), the universal 
gravitational constant (G) and the Hubble constant (H). The mass dimension 
quantity )/(~ 3 GHcm  ~ 1053 kg, derived by this approach, practically 
coincides with Hoyle-Carvalho formula for the mass of the observable 
universe, obtained by a totally different approach. It has been shown that 
this value is close to the mass of the Hubble sphere. Besides, by dimensional 
analysis it has been found that the total density of the universe, including the 
dark matter and the dark energy, is of the order of a magnitude of the critical 
density of the universe 262 10~/~ cGH   kg m-3. It deserves to note 

that these formulae have been derived without consideration of any 
cosmological model and the formula for the total mass of the observable 
universe (9) has been obtained by means of the fundamental parameters c, G 
and H only, with no information for the total density of the universe. 
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ОЦЕНКИ НА ТОТАЛНАТА МАСА И ПЛЪТНОСТ 
НА НАБЛЮДАЕМАТА ВСЕЛЕНА ПОСРЕДСТВОМ 

АНАЛИЗ НА РАЗМЕРНОСТИТЕ 
 

Д. Вълев 
 

Резюме 
Проведен бе анализ на размерностите с помощта на три 

фундаментални константи, а именно – скоростта на светлината във 
вакуум (c), универсалната гравитационна константа (G) и константата 
на Хъбъл (H). Величината с размерност на маса )/(~ 3 GHcm  ~ 1053 кg, 
изведена посредством този метод практически съвпада с формулата на 
Хойл-Карвальо за масата на наблюдаемата Вселена, получена 
посредством съвършенно различен метод. Показано бе че, тази 
стойност е близка до масата на сферата на Хъбъл. Освен това, 
посредством анализ на размерностите бе установено, че тоталната 
плътност на Вселената, включително тъмната материя и тъмната 
енергия, е от порядъка на критичната плътност на Вселената 

262 10~/~ cGH   кg m-3. 
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Abstract 
The Spectral Airglow Temperature Imager is a ground-based spectral instrument 

for spatial registration of  airglow emissions. The basic aim of the instrument development 
is the investigation of gravity waves based on the spatial characteristics of the temperature 
field at the altitude of mesopause and its evolution in the time. The temperature retrieval is 
based on matching measured and preliminary calculated synthetic spectra. 

Possibilities are presented for generalization of the basic regression equation 
which connects the measured and the synthetic spectra. A linear change of the background 
(slant background) for the entire filter transmittance interval was presumed. Numerical 
experiments by Monte-Karlo simulation were conducted. 

The presented results show a bigger stability of the proposed approach in 
comparison with the traditional one, without considering the slant background.  
 
 

Introduction 
 

The Spectral Airglow Temperature Imager (SATI) is a ground-based 
Fabry-Perot spectrometer for spatial registration of airglow emissions [1, 2]. 
The SATI instrument was originally intended for investigation of internal 
gravity waves, propagating at the altitude of the mesopause [3]. This is 
possible by processing the registered images (Fig. 1a). Twelve sector 
spectra are determined from each image (fig. 1b, c). These spectra are 
compared with synthetic spectra, calculated in advance for different 
temperatures for determination of the mesopause temperature where the 
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respective emissions are radiated. The radiation maximum of these airglow 
emissions is disposed at a mean altitude of 97 km for the transitions 

)Xb(O g
3

g
1

2    . The processing of images from one night séance yield 

the rotational temperature and the emission rate sector time series [1, 2] 
determined for different points from the annular sky segment at the altitude 
of the mesopause. The propagation and the cinematic parameters of the 
internal gravity waves are determined on the basis of the analysis of these 
time series [3]. 

  

                   
 

                                      a)                       b)                        c) 
Fig. 1. a) Original image; b) image sector; and c) sector spectrum 

 
A version of SATI- 3SZ was manufactured at the Department of the 

Solar-Terrestrial Influences Laboratory in Stara Zagora [4] in collaboration 
with the Space Instrumentation Laboratory at the Centre for Research in 
Earth and Space Science (CRESS), York University, Toronto, Canada. 
Additionally, algorithms for retrieval of the rotational temperature from the 
registered O2 spectra were investigated and developed [5-6]. 
 

Temperature retrieval 
 

The determination of the mesopause temperature by SATI-registered 
images is based on the comparison of the measured spectra with a set of 
patterns – calculated in advance for different values of the temperature of 
the radiated oxygen molecules spectra which correspond to transitions 

)Xb(O g
3

g
1

2    . These transitions correspond to wave longitude in the 

interval 864868 nm. The maximum radiation of the SATI-registered signal 
is at the height of the mesopause. The comparison of the measured spectrum 
M with the synthetic spectra ST, calculated in advance for different 
temperatures for long-time night interval allows to determine the 
equilibrium temperature of the oxygen molecules, radiating the signal, 
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incoming toward the Earth. This is done on the basis of the following linear 
regression equation: 

 

(1) BS
~
.EM

rotT   

In the last equation, the physical meaning of the multiplicative 
coefficient E is an integral emission intensity for all filter transmittance 
intervals. The meaning of B is a mean intensity of the background. The 
solution of regression equation (1) yields the values of E and B. The 
rotational temperature Trot is determined on the basis of minimizing the 
functional 

 

(2) 






2

1

rotrot

p

pp
p

2
p,Tp

12
T,L w.)BS

~
.EM(

pp

1  

 

The additive constant B in regression equation (1) allows the 
admission of even background intensities for the entire spectral interval. The 
weight coefficients pw satisfy condition 1w

p
p  . 

 

Generalization of the basic regression equation for a case of 
slant background 

 

The conducted measurements are accepted to be correct and usable 
when a low background signal is retrieved. Besides, the background signal 
is accepted even for the entire filter transmittance spectral interval. In all 
cases when spectral pollution from a secondary source is available, the 
respective measurements are eventually removed. 

We will accept a linear change of the background by frequency and 
generalization of the basic regression equation (1) 

 

(3)  BBS
~
.EM 0

Trot
 

 

The background B was presented by two components B and B  in 
equation (3). Component B is even by intensity for the entire spectral 
interval of the background which was passed from the filter; component B  
is presumed dependant linearly in the frame of the same spectral interval. 
Both components can be changed for the time of every next measurement as 
a result of the change of the direction of the incoming signal in relation to 
the stars. Component B is unknown in the space and time and can be 
determined by minimization of the generalized version of (2)   
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(4) 






2

1

rotrot

p
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1  

The solution of regression task (3) by the same tools as (1) is possible after 
transformation to 
 

(5) 0
T BS

~
.EBM

rot
   

or 
(5') 0

T BS
~
.EM

rot
 , 

 

In (5’) M is a modified measured spectrum. The minimization is based 
already on 
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In the new regression task, the rotational temperature is found when (6) has 
a minimum along with the additional condition for slant background. 

The reasons for admission of uneven background are purely physical 
and are connected with the natural conditions of the measurement. Except 
the natural airglow emissions, other sources of a natural background are also 
available. 

 
Monte-Karlo simulation 

 

A series of simulations was performed as for each temperature in the 
interval (110300К) one “measured” spectrum was generated. This was 
made as the relative synthetic spectrum 

rotTS was transformed towards the 

image space by choosing typical values of the filter parameters (refractive 
index and central wavelength) in order to conduct the entire experiment. 

 

(7) 



1

,Tp,T

p

p

rotrot
SS

~



  

 

In the last formula p is the wavelength, corresponding to the p-th pixel in the 
one-dimensional space of the measured spectra [5]. A multiplicative gaining 
coefficient E is applied; with this coefficient the values of the spectrum for 
every pixel are fitted to the real ones: 
 

(8) 
p,rotp,rot TT S

~
.EM   



 81 

A random noise was added to the spectrum with a generator of random 
numbers )5.RANDOM.()p(  with amplitude  . Two background 
components - even and uneven, are added to the spectrum, thus obtained, 
and we finally have 
 

(9) pTT BBS
~
.EM

p,rotp,rot
   

 

The aim of the investigation is to establish the behavior of the 
original approach for temperature retrieval without taking into account 
component B  as well as the behavior of the modified one, taking into 
account this component. 

For each temperature spectrum, generated in the observed interval 
(110-300K), “polluted” with uneven background, 20 tests were performed 
for temperature retrieval by the two approaches.  

Uneven background with linear change and different intensity at 
both ends b2= b1 + b(rand-.5) was generated by every test. Value b1 is the 
background intensity at the first end of the spectrum, however, at the other 
end we have b2= b1 + b.(rand-.5); where b is the doubled maximum of the 
possible difference of the background amplitude at this end and - is the 
random number within the interval (-.5,5). A series of experiments was 
conducted with different values of even and uneven backgrounds 
( B , B )=(20,20; 20,15; 20,5) (Table 1). Experiments with different values 
of the random noise amplitude  =(1;3;5) and different gain coefficients 
E=(25,50,100) were conducted. 

 
     Table 1 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

E = 25 
Noise = 5 
B = (20;20) 

E = 50 
Noise = 5 
B = (20;20) 

E = 100 
Noise = 5 
B = (20;20) 

E = 25 
Noise = 5 
B = (20;15) 

E = 50 
Noise = 5 
B = (20;15) 

E = 100 
Noise = 5 
B = (20;15) 

E = 25 
Noise = 5 
B = (20;5) 

E = 50 
Noise = 5 
B = (20;5) 

E = 100 
Noise = 5 
B = (20;5) 
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Results from the Monte-Karlo simulation experiments 
 

Figures 2 and 3 contain histograms which present the temperature 
retrieval process by applying the two models M and B. The initial 
temperatures, at which “the measured spectra” were generated, were 170K 
for fig.2 and 210K for fig.3 by intensities 25, 50 and 100 respectively. 
During these experiments, 1000 tests were performed for temperature 
retrieval with addition of random noise and slant background. The 
difference between the two approaches is obvious. The retrieval 
temperatures were distributed in the ranges 67 and 95, respectively, for 
initial temperatures of 170 and 210 and with model intensity 25. At higher 
intensity of the modeled signal of 50 units, the intervals are narrowed to 
33K and 46K, respectively, and to 16K and 22K at intensity of 100, 
which correspond to reduction of the significance of the slant background. 
When applying the temperature retrieval model B, the intervals in which the 
temperatures are distributed at intensity 25, are 28K and 57K, 14K and 
19K at intensity 50 and 7K and 10K at intensity 100, respectively. 
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Fig. 2. Histograms of retrieved temperatures by original temperature 170K- (a) 
by original method and (b) by uneven background reduction 
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Figures 4 and 5 show the mean square deviation and the absolute 
errors for the retrieved values of the temperature in series from 20 tests for 
each initial temperature in the interval (110-300K). Figures a-c refer to 
intensity E of 25 and to values of the slant background component of 20, 15 
and 5, respectively. The intensity is 50 units in the figures from the second 
column (d-f) and in the third one (g-i) - 100 units, with analogous 
background. It is obvious that the retrieved values fall within a very large 
interval, without considering the slant background. The values which were 
retrieved by model B fall within a rather narrow interval. 
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Fig. 3. Histograms of retrieved temperatures by original temperature 210K- (a) 

by even component only and (b) by slant background 
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Fig. 4. Mean Standard deviation for E=25 and B< (20,15,5) respectively (a-c); 

analogously E= 50 and B< (20,15,5) respectively (d-f) and E= 100 
and B< (20, 15, 5) (g-i) 
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Fig. 5. Absolute error for E=25 and B< (20,15,5) respectively (a-c); analogously E= 50 

and B< (20,15,5) respectively (d-f) and E= 100 and B< (20, 15, 5) (g-i) 
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The absolute error grows by applying of model M with increasing of 
the retrieved temperature. Respective increasing by applying of model B is 
minimal. 

Some asymmetry in absolute errors for model M is obviously, which 
speak probably for potential systematic error by retrieving of temperatures 

 
Conclusions 
 

If a slant background component is available in the measured 
spectra, the proposed approach would yield better temperature results. In all 
cases, the mean results from the temperature retrieval, taking into 
consideration the uneven background, will be in the range of one degree for 
almost the entire temperature interval of the simulation (110-300K). 

Except the development of the basic calculation model with addition 
of uneven background, which is random in the time by its character, very 
interesting appears a similar development with a significant growth of the 
background, connected with additional plank sources. The investigation of 
the spectral pollution with a solar spectrum during sunrise or sunset, or the 
Moon reflected solar light when the Moon is over the horizon, are current 
tasks, focusing the attention. 

The application of the present approach for minimization of errors 
by real data is a very attractive idea, aimed at decreasing the noise in the 
nocturnal course of the sector temperatures, determined by SATI-registered 
images. In real conditions, along with the possible slant background, most 
probably other parameters of the calculation models will also have a random 
character. Thus, the errors of the filter parameters determination will lead to 
errors of the synthetic spectra transformation [5]. These errors represent 
specific discrepancies between the transformed synthetic and measured 
spectra. Therefore, the errors, connected with the slant background, will 
compete with the noise in the measured spectrum and the unsystematic 
random noise of the filter parameters determination. The analysis of the 
influence of these errors is a possible next stage of the investigation. 
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ОПРЕДЕЛЯНЕ НА ТЕМПЕРАТУРАТА НА МЕЗОПАУЗАТА  
ОТ СПЕКТРИ, ИЗМЕРЕНИ С ИНСТРУМЕНТА SATI ПРИ 

НАКЛОНЕНА КОМПОНЕНТА НА ФОНА.  
РЕЗУЛТАТИ ОТ ЧИСЛЕНИ ЕКСПЕРИМЕНТИ 

 
Ат. Атанасов 

 

Резюме 
Spectral Airglow Temperature Imager е наземен спектрален 

инструмент за пространствена регистрация на емисии на нощно 
светене. Основната цел на развитието на инструмента е изследването 
на гравитационни вълни, основано на пространствените характерис-
тики на температурното поле на височината на мезопаузата и тяхната 
еволюция във времето. Определянето на температурата се основава на 
сравняване на измерените спектри с предварително изчислени синте-
тични спектри. 

Представени са възможности за обобщаване на основното 
регресионно уравнение, което свързва измерените и синтетичните 
спектри. Предполага се линейно изменение на фона (наклонен фон) за 
целия интервал на пропускане на филтъра. Проведена е симулация по 
метода Монте-Карло.  

Представените резултатите показват по-голяма стабилност на 
предлагания подход в сравнение с традиционния, без разглеждане на 
наклонен фон. 
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Abstract  
Humans are exposed to ionizing radiation all the time, and it is known that it can 

induce a variety of harmful biological effects. Consequently, it is necessary to 
quantitatively assess the level of exposure to this radiation as the basis for estimating risks 
for their health. Spacecraft and aircraft crews are exposed to elevated levels of cosmic 
radiation of galactic and solar origin and to secondary radiation produced in the 
atmosphere, the vehicle structure and its contents. The aircraft crew monitoring is required 
by the following recommendations of the International Commission on Radiological 
Protection (ICRP) (ICRP 1990), the European Union (EU) introduced a revised Basic 
Safety Standards Directive (EC 1997) which, inter alia, included the exposure to cosmic 
radiation. This approach has been also adopted in other official documents (NCRP 2002). 
In this overview we present the results of ground based, mountain peaks, aircraft, balloon 
and rocket radiation environment monitoring by means of a Si-diode energy deposition 
spectrometer Liulin type developed first in Bulgarian Academy of Sciences (BAS) for the 
purposes of the space radiation monitoring at MIR and International Space Station (ISS). 
These spectrometers-dosemeters are further developed, calibrated and used by scientific 
groups in different countries. Calibration procedures of them are performed at different 
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accelerators including runs in the CERN high-energy reference field, simulating the 
radiation field at 10 km altitude in the atmosphere and with heavy ions in Chiba, Japan 
HIMAC accelerator were performed also. The long term aircraft data base were 
accumulated using specially developed battery operated instrument in 2001-2009 years 
onboard of A310-300 aircrafts of Czech Air Lines, during 24 about 2 months runs with 
more than 2000 flights and 13500 flight hours on routes over the Atlantic Ocean mainly. 
The obtained experimental data are compared with computational models like CARI and 
EPCARD. The mountain peak measurements are performed with Liulin-6S, Liulin-6MB and 
Liulin-6M internet based instruments. They use internet module to generate WEB page, 
which is posted online. The obtained deposited energy spectra, dose and flux data are 
transmitted via LAN interface by HTTP and FTP protocols. They work online for different 
periods between 2005 and 2011 at Jungfrau (3453 meters Above Mean Sea Level (AMSL) 
http://130.92.231.184/); at Lomnicky stit (2633 meters AMSL http://147.213.218.13/) and 
Moussala (2925 meters AMSL http://beo-db.inrne.bas.bg/moussala/) peaks in Switzerland, 
Slovakia and Bulgaria. 4 small size battery operated instruments were flown on balloon 
over south France in June 2000 and NASA balloon over New Mexico, USA on 11th of June 
2005. 1 instrument was used in rocket experiment January 2008. 

 
 

1. Introduction 
 

Ionization in the lower atmosphere is dominated by radionuclides in 
the Earth’s crust. Over deep water, there are few dissolved radionuclides so 
that the ionization is dominated by radiation incident on the top of the 
atmosphere. The ionization over the landmass is complicated and depends 
on many physical and chemical factors. V. F. Hess studies found the 
ionization rates to decrease with altitude up to 500 meters followed by a 
steady increase at higher altitudes to where the ground level rate is matched 
at 1500 meters. For this discovery, Hess would receive a Noble prize in 
physics (1936) [1].  

The space radiation sources as Galactic cosmic rays (GCR) and Solar 
cosmic rays (SCR) penetrate deep in the atmosphere where the primary 
protons generate a cascade of particles (protons, neutrons, pions, muons, 
electrons and gamma quants) [2]. The first reactions of the cosmic rays with 
the atmosphere occur at altitudes above 20 km. Down at altitudes 19-20 km 
is recognized the so-called Photzer maximum [3]. This is the main 
maximum of the ionization and of dose rates profile in the Earth atmosphere 
and reach about 3 Gy h-1. At aircraft altitudes (10-12 km) the neutron flux 
dominate and generate about 10% of the absorbed dose but 59% of the 
ambient equivalent dose. Earth magnetic field shields atmosphere from the 
primary and secondary cosmic rays that is why the maximum of the 
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latitudinal profile is at high magnetic latitudes. Close to the magnetic 
equator is formed the absolute minimum of the ionizing radiation at aircraft 
altitudes [4,5].  

The solar activity also modulates the atmospheric ionizing radiation 
through the modulation of the GCR flux. Interplanetary magnetic field, 
which is embedded in the solar wind shield the heliosphere from GCR and 
this, is the reason for observation of maximum of the GCR flux and 
respectively the dose rates in atmosphere close to the minimum of the solar 
cycle. In reverse close to the maximum of the solar cycle a minimum of the 
GCR flux is observed [5].  

 
1. Description of the Liulin type instruments used for 

atmospheric radiation monitoring 
 

The main purpose of Liulin type Spectrometry-Dosimetry Instruments 
(LSDIs) is cosmic radiation monitoring in the atmosphere at the workplaces. 
LSDI measures the amplitudes of the pulses generated by the incoming 
particle and rays radiation in the silicon detector, which is proportional to 
the deposited energy and respectively to the absorbed dose in Gray. These 
amplitudes are organized in 256 channels spectrum of the deposited energy 
in the silicon detector, which is further used for precise calculation of the 
absorbed and equivalent doses and for characterization of the type and 
energy of the incoming radiation. Up to now more than 20 LSDIs were 
developed, build and used on the ground, in aircraft altitudes, in Low Earth 
Orbits (LEO) and inside and outside of the Earth magnetosphere and on the 
Moon orbit [6].  

First use of Liulin type LSDI were in the Mobile Radiation Exposure 
Control System - Liulin-E094, which contains 4 active individual 
dosemeters and worked successfully between May and August 2001 on 
board of US Laboratory module of the International Space Station (ISS) as a 
part of the ESA Dosimetric mapping experiment leaded by Dr. Günter 
Reitz, DLR, Germany [7, 8]. 

The LSDI functionally is low mass, low power consumption or battery 
operated dosimeter. The smallest one built till now is the RADOM 
instrument (98 grams) used for measurement of the near Moon radiation 
environment on the first Indian Moon satellite – Chandrayaan-1 in 2008-
2009 [9, 10]. The largest modifications (450 grams) are these with 2 
lithium-ion batteries, Global Positioning System (GPS) receiver and Secure 
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Digital (SD) card for about a month of independent recording of the 
radiation environment and the UTC time and geographic coordinates at 
aircraft altitudes [11]. (See Figure 1.) 

 

 

Fig. 1. LSDI with GPS receiver and SD 
card for continues dose monitoring at aircrafts 

 
Except the already mentioned devices, since 2001 following examples 

of LSDIs have been used on ground, on board aircrafts, balloons and 
rockets: 

Mobile Dosimetry Units MDU-5 and 6 was used for more than 13500 
hours between 2001 and 2009 on Czech Airlines (CSA) aircraft at different 
routes as comparison measurement with aircraft crew individual dosimetry. 
The experiments and data analysis were managed by Prof. F. Spurny [12]; 

The Liulin-MDU-2 instrument work successfully during the flight of 
French balloon up to 32 km altitude in the region of the Gap town in 
Southern France on 14th of June 2000. This experiment was performed by 
the Nuclear Physics Institute, Czech Academy of Sciences [13].  

One battery-powered LSDIs of Liulin-4J type perform dosimetric 
measurements of the ionizing radiation environment at ~20 km altitude 
aboard NASA’s Lockheed ER-2 high altitude research aircraft in October-
November 2000 from Edwards Air Force Base (AFB) in Southern 
California and flew over the border region dividing Central California from 
Central Nevada [14].  

Three battery-powered LSDIs were operated during the 8 June 2005 
certification flight of the NASA Deep Space Test Bed (DSTB) balloon at Ft. 
Sumner, New Mexico, USA. The duration of the flight was about 10 hours 
[15];  
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Liulin-R was successfully launched on HotPay2 rocket from Andoya 
Rocket Range (ARR), Norway, on 31st of January, 2008 at 19:14:00 and 
rising up to 380 km altitude, as a part of an EU financed scientific program 
called eARI (ALOMAR eARI project) [16]; 

Liulin-6S, Lilun-M, Liulin-6MB and Liulin-6R are internet based 
instruments. They use internet module to generate web page. The obtained 
deposited energy spectra data are transmitted via LAN interface by HTTP 
and FTP protocols. They worked for different periods since 2005 at 
Jungfrau (Switzerland) 3453 meters Above Mean Sea Level (AMSL) 
http://130.92.231.184/), Moussala (Bulgaria) 2925 meters AMSL http://beo-
db.inrne.bas.bg/moussala/ and Lomnicky Stit (Slovakia) 2633 meters 
AMSL http://147.213.218.13/ peaks and at ALOMAR observatory in 
Norway (http://128.39.135.6/) [17]. The three peak instruments are working 
well till now (March 2011) and their data can be obtained online on the 
mentioned above addresses;  

Very similar instruments to the Mobile Dosimetry Units MDU-5 and 6 
are used by scientific groups in Spain [18] and Germany [19] for radiation 
measurements at aircrafts. 

  

2.1. Block diagram explanation 
 

LSDI usually contains: one semiconductor detector, one charge-
sensitive preamplifier, a fast 12 channel analog-to-digital converter (ADC), 
discriminator, real time clock, 2 or more microcontrollers and a flash 
memory. Different modifications of LSDI use additional modules such as: 
UV sensitive photo diodes, temperature sensor, Global Positioning System 
(GPS) with antenna and receiver, display (see Figure 2.), multimedia card 
(MMC) or SD cards. Figure 3 presents a generalized block schema of Liulin 
type spectrometers. 

 

 

Fig. 2. LSDI with LCD display 
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The unit is managed by the microcontrollers through specially 
developed firmware. Plug-in links provide the transmission of the stored on 
the memory data toward the standard Personal Computer (PC) or toward the 
telemetry system of the carrier. A computer program in PC is used for the 
full management of the LSDI through standard serial/parallel or USB 
communication port. The same program stores the full data sets on the PC 
and visualizes the data for preliminary analysis.  

Different power supplies were used in the different instruments. They 
are presented on the upper part of Figure 1 and include 3.6 V or 7.2 V 
rechargeable or primary batteries, 28 V or 43 V DC aircraft and satellite 
power and 110 V, 400 Hz AC aircraft power line. 

 
 

 

 
Fig. 3. Generalized block-diagram of Liulin type instruments 
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1.2. Dose interpretation procedure 
 

The spectrometers measure the pre-amplified amplitude of pulses 
generated by particles or quantum hitting the detector. The amplitude is 
proportional by a factor of 240 mV.MeV-1 to the energy loss in the detector 
and respectively to the dose and Linear Energy Transfer (LET). By the 12 
bit ADC these amplitudes are digitized and organized in a 256-channel 
spectrum using only the first 8 bits of the ADC. The dose D [Gy] by 
definition is one Joule deposited in 1kg. We calculate the absorbed dose by 
dividing the summarized energy deposition in the spectrum in Joules to the 
mass of the detector in kilograms. 
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where mD is the mass of the detector in kg, ki is the number of pulses 
in channel “i”, Ai is the amplitude in volts of pulses in channel “i”, K.i.ki.Ai 
is the deposited energy (energy loss) in Joules in channel “i”. K is a 
coefficient. All 256 deposited dose values, depending on the deposited 
energy for one exposure time, form the deposited energy spectrum. 

In 2001 F. Spurny developed a procedure, which allows the 
calculation of the ambient dose equivalent from the deposited energy 
spectrum [20]. The procedure was further developed by O. Ploc [21]. 

 
2. Calibration results  
 

LSDIs were calibrated in wide range of radiation fields. First it was 
irradiated in gamma and neutron (137Cs, 60Co, AmBe, and 252Cf) radiation 
fields [22]. The calibrations revealed that except for charged energetic 
particles, the detector has high effectiveness toward gamma rays. Detector’s 
neutron effectiveness depends on their energy [22].  

LSDIs have been calibrated in the CERN-EU energy reference field 
behind the concrete shield [23]. The fluence energy spectra of neutrons 
registered there are very similar to the spectra on the aircraft and/or balloon 
[20].  

Eight batteries operated LSDIs were tested in CERN-EU high-energy 
reference field in July 2003. All 8 instruments were irradiated at the same 
time by exposing their Si-diode surfaces parallel to the concrete wall at the 
distance of 15 cm between the diodes and the side wall of the concrete 
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shielding. The relative LSDIs dose rates depend by correction factors from 
their positions. The correction factors assessment is based on the results 
obtained by CERN collaborators Mitaroff & Silari [18], taking into account 
that the most part of doses is due to low LET component (muon 
background) of the field. The time structure of the beam was within a pulse 
cycle lasting 16.8 s and particles were impinging on the target for 5.1 s. The 
level of beam intensity is monitored using a precise ionization chamber 
(PIC). It is expressed in terms of number of PIC impulses per 1 spill of the 
accelerator. 
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Fig. 4. Linear regressions of the total absorbed dose rates 
 in silicon as a function of the beam intensity for 8 different LSDIs. 

 
Figure 4 represents the obtained by the eight different LSDIs linear 

regressions of the total dose in Silicon detectors rates as a function of the 
beam intensity represented with the number of PIC impulses. Nice linear 
increase of the dose rates in each LSDI is observed when the beam intensity 
increase. The differences in the slope of the linear curves are found to 
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depend mainly from the position in the field and therefore their reference 
values [23]. 

LSDIs were calibrated, including the dependence of energy deposition 
in the detector on the direction of the incident radiation at the cyclotron 
facilities of the Indiana University [24], University of Louvain, Belgium [7] 
and of the National Institute of Radiological Sciences-STA, Chiba, Japan 
[25] with protons of energies up to 190 MeV. In all protons calibrations 
good agreement was obtained between the experimental and simulated with 
GEANT4 code spectra. 

Finally LSDIs was calibrated at heavy ions fluxes up to 500 MeV/u 
iron ions at HIMAC, Japan irradiation facility [7, 25]. Heavy ion 
experiments also confirmed that the dosimeter can measure the 
fragmentation of heavy ions and it was established that instrument’s energy 
resolution is sufficient to distinguish the charge peaks of the individual 
fragment ions [25].  

In-flight intercalibration between LSDI and commercial available 
TEPC were obtained by Canadian group during a flight from Singapore to 
London on 2 December 2003 and show nice agreement [26]. 

 
4. Experimental Results  
 

4.1. General presentation of the deposited dose spectra shapes and 
slopes 

 

Figure 5 presents examples of the averaged spectra shapes and slopes 
from ground, mountain peak Jungfrau, aircraft and spacecraft (Please look 
the top part of the figure). The individual spectra seen on this figure are 
obtained after averaging of various numbers of primary spectra and are 
plotted in coordinates Deposited energy/Deposited dose rate. The main idea 
of the figure is that the spectra shapes and slopes characterize the 
predominant type of radiation where the data are taken from [6]. Spectra are 
grouped by the predominant type of radiation: Lowest blue shadowed is 
from Galactic Cosmic Rays (GCR), while middle (yellow shadowed) is 
from protons from South Atlantic Anomaly (SAA). The top magenta 
shadowed group of curves is from Outer Radiation Belt (ORB) electrons. 

From bottom to top the spectra are arranged depending on the value of 
the deposited dose rates seen in the middle part of the figure. Lowest is from 
ground natural radiation of 0.12 Gy h-1, while the highest spectra of 9000 
Gy h-1 is from relativistic electrons measurements at ISS [27].  
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ISS; MDU#4; July 6-13 2001
CSA aircraft; MDU#5; 5 May - 28 June 2002
Foton M2; R3D-B2; June 1-12 2005
CSA aircraft; MDU#5; 6 May - 25 June 2005
Jungfrau; 3450 m a.s.l.; Nov.2005-Feb. 2006
Foton M3; R3D-B3 & Liulin-Photo; Sept.14-26 2007
HotPay-2 rocket; Liulin-R; 31 January 2008
ISS; R3DE; 20 Febr.-20 March 2008
Jungfrau; 3450 m a.s.l.; Nov. 2005-Feb. 2006
ALOMAR, 380 m a.s.l.; Jan.-Feb. 2008  

 

 
 

Fig. 5. General presentation of the deposited dose spectra  
obtained during different experiments in the atmosphere and space. 
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4.2. Ground based and mountain peak results 
 

The ground based measurements in usual low solar activity conditions 
obtain the activity from the radioactive isotopes in the ground below the 
instrument. This type and the Radon gas radiation predominates there and 
gives about 60% of the total dose, which usual values vary between 0.04 
and 0.15 Gy/h. The GCR primary and secondary particles give only 13% 
of these doses [28]. These type of data were obtained by us by the Liulin-6R 
instrument located at the ALOMAR observatory at about 380 meters above 
the see level during the flight of HotPay-2 rocket experiment up to 380 km 
from Andoya Rocket Range, Norway on January 31st 2008 [16]. As 
expected on Figure 5 this is the lowest curve.  

 

 

Fig. 6. Comparison of the variations of the Jungfrau dose  
and count rate with the Oulu NM relative count rate data  

around the Forbush decrease in September 2005. 



 98 

The absorbed dose spectra measured at the 3 mountain peaks Jungfrau 
(3453 m), Mousala (2925 m) and Lomnicky stit (2633 m) are more similar 
to the aircraft spectra than to the ground based measurements (Please see 
Figure 5).  

The comparison of the Jungfrau count and dose rate data (3450 m) 
with the Oulu NM http://cosmicrays.oulu.fi/ relative count rate data (Please 
see Figure 6) obtained around the Forbush decrease in September 2005 
show that Liulin type spectrometers can be used effectively to monitor the 
amount of primary and secondary GCR particles at mountain peaks. The 
ALOMAR station data don’t show dependence by Forbush decrease.  

 

4.3. Aircraft results 
 

The aircraft spectra on Figure 5 are in the middle of the blue 
shadowed area and are very similar but with lower doses to the spacecraft 
GCR spectra. 

 

 

Fig. 7. Variations of the average deposited dose rate  
for transatlantic flights at altitude 10.6 km 
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Figure 7 summarizes all data obtained by 2 Liulin type instruments on 
CSA aircraft between 2001 and 2009. All data in the period 2001-2007 was 
collected by the MDU#5 instrument. The data in 2009 was measured with a 
new build instrument, which have almost same characteristics as MDU#5. 
More than 64000 measurements with 10 minutes resolution are presented on 
the figure. Each patches of data were obtained in about 1-3 months of 
continues measurements campaign. Mostly aircraft flights on the 
destinations Prague - New York and Prague - Toronto at fixed altitude of 
35000 feet (10.6km) are used. The cut-off rigidity varies between 0.16 and 
2.0 GV when the latitude changes between 50 and 65°. 

On the X axis is plotted the date between January 2001 and October 
2009. On the left hand Y axis the measured absorbed dose rate in the silicon 
of the detector is plotted. The right hand Y axis is for the Oulu Neutron 
Monitor response in percent. The Oulu data http://cosmicrays.oulu.fi/ are 
seen on the figure as continues heavy black line, which varies in average 
between -7% in the maximum of the solar activity (2001-2004) and +9% in 
the minimum of solar activity in 2009.  

The Liulin data rises in average from about 1.75 to 2.5 Gy h-1. This 
tendency is presented on the plot by polynomial fit of data shown as black 
line through them. The dose rates obtained during the solar proton event and 
Ground Level Enhancement on 15th of April 2001 (GLE 60) (Spurny and 
Dachev, 2001) form the absolute maximum in the data and are specially 
mentioned in the left hand side of the picture. The increase of the GCR data 
in 2009 shows single points, which are comparable with those obtained 
during GLE 60. The calculated apparent dose equivalent dose rates shows 
very similar to the presented at Figure 1 variations but in an average range 
from 4-6 Sv h-1. Some extreme high measurements in 2009 reach values of 
11 Sv h-1. 

Figure 8 was specially designed to present how closer the measured 
GCR dose rates and fluxes on aircraft and spacecraft are. There are 2 panels 
on the figure. The X axes is for the geographic latitude in the range from 0 
to 70° in the Northern hemisphere. The data in the figure are selected from 
relatively narrow longitudinal range – ±40° from the Greenwich meridian. 
Two facts allow us to conclude that only GCR data are separated: 1) This 
latitudinal and longitudinal range is away from the region of the South 
Atlantic Anomaly (SAA); 2) There are no Solar Proton Events in the 
mentioned above time intervals.  
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Fig. 8. Latitudinal profiles of the dose rate and fluxes at aircraft, 
 Foton M2/M3 spacecraft and ISS. 

 
In the panels are presented the measured absorbed dose rates (bottom 

panel) and fluxes (top panel) at 4 vehicles, which data are taken for the 
periods and altitudes as follows: Aircraft -05.05-26.06 2005 at 10.6 km; 
Foton M2 1-12 June 2005 at 260 km; Foton M3 15-24 September 2007 at 
267 km; ISS (MDU#2) 6-13 July 2001 at 393 km.  

The main results from the analysis of Figure 7 are: 1) All latitudinal 
profiles shows similar shape with minimum at low latitudes and rising 
values toward high latitudes; 2) In the range 10-30° the values are 
practically independent from the latitude. The averaged dose rates in this 
range are 0.66 Gy h-1 at aircraft, 1.34 Gy h-1 at Foton M3/M3 satellite and 
1.93 Gy h-1 at ISS. Simple calculations reveal that the ratios of the dose 
rates in this range at altitudes 10.6, 260 and 393 km are as 1:2:3 i.e. the 
GCR component of the Earth radiation environment is attenuated only 3 



  101 

times from the Earth magnetic field and atmosphere on it path from space to 
the ground; 3) The aircraft dose rates and fluxes shows almost fixed values 
in the range 50-60°.  

 

4.5. Balloon results 
 

One MDU of the Liulin-4C system has been exposed on the balloon 
launched the 14 June 2000 at the Gap (France). The altitude, the effective 
dose profile calculated by means of the CARI-6 code and the dose in Si, 
D(Si), profiles directly measured with Liulin-4C are presented in the Figure 
9 [13]. All dosimetric data well present the Photzer maximums [3] at about 
1 hour and 5.2 hours after the launch. 

 

 

Fig. 9. Profiles obtained by one of the MDUs of Liulin-4C  
system during balloon flight over the French  

Gap town on 14th of June 2000. 
 

We transform the dose rates in Si determined on the balloon board to 
the dose equivalent rates (H-rate) based on the CERN reference field. The 
results obtained are graphically presented in the Figure 9, together with the 
values calculated by means of the CARI-6 code [29]. One can see from 
Figure 9 that the values of dose equivalent deduced from the Liulin-4C data 
on the base of CERN calibration are much closer to the effective dose 
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values calculated by means of the CARI6 code. They are generally higher, 
about 20-30 %, due to the difference in the relative contributions of low and 
high LET components in on balloon board and CERN reference field. 

Three battery-powered LSDIs were operated during the 8 June 2005 
certification flight of the NASA Deep Space Test Bed (DSTB) balloon at Ft. 
Sumner, New Mexico, USA. The duration of the flight was about 10 hours 
[15]. 

The DSTB was launched from Ft. Sumner, NM at 09:45 Mountain 
Daylight Time (MDT). The three Liulin-4 MDUs measured particle flux and 
dose rate as functions of time at one minute intervals during. Figure 10 
shows flux as a function of time as measured by the three MDUs, as well as 
altitude as provided by the DSTB GPS receiver, together barometric 
altitude, as functions of time.  

All three MDUs measured similar flux and dose rate profiles and these 
profiles correlate well with the altitude profiles. Following launch at 09:45 
MDT, there is a rapid increase in flux and dose rate as the balloon gains 
altitude. Both flux and dose rate reach a maximum at ~70,000 ft. altitude 
(21.3 km) and then fall off as altitude continues to increase. The altitude of 
maximum flux and dose rate is the Photzer Maximum, the altitude at which 
the showers or cascades of secondary particles produced by primary cosmic 
rays interacting with the constituent nuclei of the atmosphere are most 
intense. Shortly before 12:00 MDT, the DSTB attained its maximum 
cruising altitude of ~120,000 ft. (36.5 km) and both flux and dose rate 
levelled off. Flux and dose rate remained fairly constant for the remainder of 
the flight and only began to change at 18:45 when the DSTB gondola was 
released from the balloon and began its rapid descent toward the ground. 
The flux and dose rate measured by MDU #5 during the high altitude cruise 
phase shows considerably more variation than do the measurements made 
by MDU #1 and MDU #2. This is because MDU#5 was exposed beneath 
the shielding carousel at the centre of the DSTB platform and the carousel 
was repeatedly rotated during the flight in order to test its operation. As a 
result, the shielding environment immediately above the MDU #5 detector 
repeatedly changed over the course of the flight. 

The most interesting observation from these results is that higher 
values of flux and dose are for MDU #2 under 5 g cm-2 Al shielding and for 
MDU #5 under the carousel, and not for MDU #1 which was relatively 
unshielded. This result runs contrary to expectations that the larger amounts 
of shielding would attenuate the flux and thereby reduce the dose rate. 
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4.3. Rocket results 
 

Liulin-R was successfully launched on HotPay2 rocket from Andoya 
Rocket Range (ARR), Norway, on 31st of January, 2008 at 19:14:00 and 
rising up to 380 km altitude, as a part of an EU financed scientific program 
called eARI (ALOMAR eARI project) [16].  

 

 

Fig. 10. Flux profiles measured by the three Liulin-4 MDUs  
exposed during the 8 June 2005 DSTB certification flight. 

 Also shown is the GPS altitude profile in meters. 
 
Figure 10 represent the obtained dose rate (red line) and flux (blue 

line) data in dependence by the altitude of the rocket. We believe the 
ascending data up to 150 km of altitude are corrupted by the rocket 
vibrations, which were infused by the burning in this phase engine. Next 
between altitude of 200 km up to the apogee of the rocket flight (380 km) 
the dose rate and flux remain almost fixed in both ascending and descending 
parts of the flight. The dose rate values of about 10 Gy h-1 are close to the 
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observed at similar altitudes GCR values on spacecraft [6]. Also the 
obtained deposited energy average spectrum, shown on Figure 5 with blue 
line and red stars is exactly inside of the bunch of curves from satellites.  
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Fig. 11. Liulin-R data during the flight of HotPay-2 rocket  
experiment up to 380 km on January 31st 2008,  

Andoya Rocket Range, Norway. 
 

Further when on the descending part of the trajectory the rocket 
reached the higher atmosphere density regions the data were interrupted 
probably because of the generated impact in the atmosphere.  

Altitudinal, latitudinal or longitudinal dependence of the flux and dose 
are not observed along the HotPay-2 trajectory above 200 km altitude.  

 
Conclusions 
 

The presented LSDI data at various carriers prove very well the ability 
of these instruments to be used for monitoring of the atmospheric ionizing 
radiation environment.  
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Main advantage of the Liulin type spectrometers are their low weight 
(~100 g), low power consumption (~100 mW), low cost (~ 10000 Euro). 
The high scientific and application value of the obtained data is coming 
mainly from the extensive calibrations at different accelerators and from 
well-developed data analysis procedures. 
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ПРЕГЛЕД НА РЕЗУЛТАТИТЕ ОТ ИЗМЕРВАНЕ НА 
ЙОНИЗИРАЩИ ЛЪЧЕНИЯ В АТМОСФЕРАТА ПО ДАННИ  

ОТ ПРИБОРИ, РАЗРАБОТЕНИ В БЪЛГАРИЯ 
 

Ц. Дачев, Б. Томов, Ю. Матвийчук, П. Димитров, Ф. Спурни, 
 О. Плоц, Ю. Учихори, Е. Флукигер, К. Кудела, Е. Бентон 

 

Резюме 
Хората са изложени на йонизиращо лъчение през цялото време, 

и се знае, че то може да предизвика различни вредни биологични 
ефекти. Следователно е необходимо да се оцени количествено нивото 
на експозиция от това излъчване, което да е основа за оценка на 
рисковете за тяхното здраве. Екипажите на космически кораби и 
самолети са изложени на високи нива космическа радиация от 
галактически и слънчев произход, както и на вторична радиация, 
създадена в атмосферата и структурите на превозното средство. 
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Мониторингът на екипажите на самолети се изисква съгласно 
препоръките на Международната комисия за радиационна защита 
(ICRP) (ICRP 1990) и на Директивата на Европейския съюз (ЕС), която 
въвежда основните ревизирани стандарти за безопасност (EC 1997), 
които включват и експозицията от космическа радиация. Този подход е 
приет и в други официални документи (NCRP 2002). В този преглед 
ние представяме резултатите за радиационната обстановка на 
планински върхове, самолети, балони и ракети, получени с помощта на 
спектрометри от типа Люлин, които измерват депозираната енергия 
със силициев диод. Те са разработени в Българска академия на науките 
(БАН) за целите на радиационния мониторинг на станцията МИР и на 
Международната космическа станция (МКС). Тези спектрометри-
дозиметри са доразвити, калибрирани и използвани от научни 
колективи от различни страни. Тяхното калибриране е проведено на 
различни ускорители, включително в CERN във високо-енергийно 
радиационно поле, което симулира условията на 10 км надморска 
височина в атмосферата, както и с тежки йони в ускорителя - HIMAC в 
Чиба, Япония. Дългосрочна база данни е създадена чрез използването 
на специално разработен батериен прибор на борда на самолети от 
типа A310-300 на Чешките авиолинии за периода 2001-2009 г. Данните 
са от 24 сесии, всяка от които по около 2 месеца. Те съдържат повече 
от 2000 полета (13 500 летателни часа) по маршрути главно над 
Атлантическия океан. Получените експериментални данни са сравнени 
с изчислителни модели като CARI и EPCARD. Измерванията на 
планински върхове са направени с приборите "Люлин-6S", "Люлин-
6MB" и "Люлин-6M", които използват интернет модул за генериране 
на WEB страница, в която се публикуват онлайн получените енергийни 
спектри, дозата и потока чрез LAN интерфейс с протоколите HTTP  
и FTP. Данните са за различни периоди между 2005 и 2011 г.  
на върховете Юнгфрау (3453 метра над морското равнище) 
(http://130.92.231.184/); на Ломнички щит (2633 метра над морското 
равнище) (http://147.213.218.13/) и Мусала (2925 метра над морското 
равнище) (http://beo-db.inrne.bas.bg/moussala/) в Швейцария, Словакия 
и България съответно. 4 малки по размер батерийни прибора са 
използвани при полет на балон над южна Франция през юни 2000 г. и в 
балон на НАСА над Ню Мексико, САЩ на 11 юни 2005 г. 1 е 
използван в ракетен експеримент през януари 2008 г. 
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Abstract 
The light diffraction is for telescope apparatuses an especially important 

characteristic which has an influence on the record image contrast from the eye observer. 
 The task of the investigation is to determine to what degree the coefficient of light 
diffraction influences the record image brightness. 
 The object of the theoretical research are experimental results provided from a 
telescope system experiment in the process of observation of remote objects with different 
brightness of the background in the fixed light diffraction coefficients and permanent 
contrast of the background in respect to the object. 
 The received values and the ratio of the image contrast to the light diffraction 
coefficient is shown in a graphic view. It's settled that with increasing of the value of 
background brightness in permanent background contrast in respect to the object, the 
image contrast sharply decrease. The relationship between the increase of the light 
diffraction coefficient and the decrease of the brightness of the project image from 
telescope apparatuses can be observed. 

 
Light dispersion is optical device which characteristics affect the 

contrast of the image recorded by the observer’s eye [1, 5, 6, 8, 10, 11]. 
Many objects disperse light falling onto them, so the brightness’s 

values along the various directions appear to be strong. According to 
Lambert’s law [2], the brightness of a light-dispersing surface is equal in all 
directions. This assertion may be assumed only as an approximation. 

Let σ be a small area with brightness β equal in all directions. 
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The light flow ψ emitted from area σ along the normal constituent of 
angle φ is calculated. Isolating the bodily angle dφ located between two ring 
cones, generated by the rotation about normal N of two lines forming angles 
φ and φ + dφ, produces apparently: 

 

(1)  dd  sin.2  . 

The light intensity within this spatial angle is constant. Therefore, 
the light flow within the bodily angle dφ will be: 

 

(2)   dBdId  cossin2  . 

To determine the light flow ψ emitted by the area within the whole 
hemisphere, the above expression must be integrated within the limits from 
0 to π/2. Then: ψ = πBσ. 

(3) BM 


  . 

The above shows that to brightness 2cd/m 1B  corresponds lightness: 
2lm/m 14,3M . 

The surface properties of each diffusely dissipating body differ 
greatly from those of the ideal light dissipater, i.e., the brightness in the 
various directions is different. To provide numerical characteristics of 
surface brightness change in various directions, the light dissipation factor 
for a given surface is used, i.e., the ratio of the brightness of the surface 
along an arbitrary direction and the brightness of an ideal dissipater, placed 
under the same illumination conditions. The light dissipation factor is 
usually denoted by β [9]. 

The task is to investigate whether the dissipation factor β affects the 
brightness of the recorded image. 

The subject of theoretical research are the results obtained by an 
experiment with observation telescopic system [3] represented in Table 1 
during the observation of remote objects with various background 
brightnesses ranging between 10-2 and 10-3 cd/m2 with given light 
dissipation factors: β1 = 0.1; β2 = 0.2; β3 = 0.3 and constant contrast of the 
object’s background K = 0.3. 
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Table 1 

 Light 
dissipatio
n factor   =  

0,01 
  = 

 0,1 
  =  

1 
  =  

10 
  =  

100 
  =  

103 

 

X 

1  = 0,1 0,2999 0,2981 0,2431 0,0901 0,0125 0,0013 1X  = 0,1566 

2  = 0,2 0,2986 0,2868 0,2054 0,0517 0,0064 0,0006 2X  = 0,1415 

3  = 0,3 0,2979 0,2806 0,1124 0,0379 0,0043 0,0004 3X  = 0,1239 

 X  = 0,1407 

 

In the last column of Table 1, the obtained data is presented, 
considered as values of the brightness x for the group of factors β1, β2, β3, 
i.e., z = 3, where the mean group values are denoted by 1X , 2X , 3X  and the 

overall mean value X  for the considered brightnesses n = 6 are calculated 

using formulae [7]: 

(4) 



z

i

xijX
1

2

1
  zi ...2,1  

(5) 



z

i

n

i

z

i

ix
zzn

X
111

11
 . 

The hypothesis H which must be verified suggests that the light 
dissipation factor  does not affect brightness, while the alternative 
hypothesis suggests the opposite. To check up the zero hypotheses H, the 
averaged data from the 18 performed studies must be processed. The data 
processing includes calculation of the square sums RA  , ,   using 

formulae: 

(6)  2
11

xxij

n

i

Z

i

 
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  
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while the dispersions S 2 , S 2
A  and S 2

R  are evaluated using formulae [4]: 

(9) 
1

222




 k
S  

(10) 
1

2




k
S A

A

A
A





 

(11) 
)1(

2










k
S R

R

R
R  . 

The obtained values are shown in Table 2. 

     Table 2 

Types of square 
sums 

Square sum Degree of freedom Dispersion evaluation 

Total   = 0,331486  6 = 17 2S  = 0,019499 

By factors А  = 0,000537 A  = 2 2
AS  = 0,000268 

Residual R  = 0,022063 R  = 15 2
RS  = 0,022063 

 

The calculation of the disperse ratio F is performed using formula: 

(12) 
2

2

R

A

S

S
F   = 0, 0121831. 

The obtained disperse ratio (12) is compared with the table value FT 
at significance level  = 0.05 [2] and it is observed that F > FT, which 
evidences that light dissipation affects image brightness. 

Accounting to the fact that the contrast K depends on the object’s 
brightness Bob and the background Bb, K may be determined from: 

(13) 
ф

фоб

В

ВВ
К


  

and, accounting to the additional brightness B, due to light dissipation, 
which may be written as: 

(14) )( фоб ВВВ   
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the contrast of the image K′ recorded by a visual optic system during 
observation of a remote object will be equal to: 

(15) .
1(1)(

`

В

К

ВВ

К

ВВВ

ВВ
К

фобфобф

фоб













 

From expression (15) it follows that, with definite object contrast 
with respect to the surrounding background, the image contrast K will be 
reduced, while the light dissipation factor increases. 

In Fig. 1, the curves for the appropriate dissipation factors are 
shown. Apart from the image contrast’s reduction with the light dissipation 
factor ’s increase, the curves presented in Fig. 2 also reveal that the 
contrast K′ of the recorded image drops abruptly when the background’s 
brightness exceeds (24…30) cd/m2, i.e., the specified background contrast 
with respect to the object, which is 0.3, does not provide proper image of the 
observed remote objects. Therefore, at some given contrast of the object 
with respect to the surrounding background, the contrast of the recorded 
image K′ is reduced while the light dissipation factor increases. At 
background brightness within the range from 10-2 to 103 cd/m2 it may be 
shown that, when the value of background brightness increases, while the 
background contrast with respect to the object K = 0.3, the image’s contrast 
drops abruptly. 

0,01

0,10

0,05

0,15

0,20

0,25

0,30

0,01 0,1 1 10 100 1000

K

 

Fig. 1. Dependence of the image contrast on the light dissipation factor 
 

The graphic relationship displays reduction of the image contrast 
with increase of the light dissipation factor . Moreover, when the 
background’s brightness exceeds 24…30 cd/m2, the contrast of the recorded 
image drops abruptly. 
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ИЗСЛЕДВАНЕ НА ЗАВИСИМОСТИТЕ МЕЖДУ 
СВЕТОРАЗСЕЙВАНЕТО И КОНТРАСТА  
НА РЕГИСТРИРАНОТО ИЗОБРАЖЕНИЕ  
ПРИ РАЗЛИЧНА ЯРКОСТ НА ФОНА  

 
С. Стоянов, Г. Мардиросян 

 
Резюме 

Светоразсейването е важна харктеристика на оптичните уреди, 
която влияе върху контраста на регистрирания образ. Повърхността на 
всяко дифузно разсейващо тяло в значителна степен се различава по 
свойства от идеалния светоразсейвател, т. е. яркостите в различни 
посоки се оказват различни. За да се характеризира числено 
изменението на яркостта на повърхнина в различни направления, се 
използва коефициент на светоразсейване за дадена повърхност, като се 
разбира яркостта на тази повърхност, в произволна посока, към 
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яркостта на идеален разсейвател, намиращ се в същите условия на 
осветеност. 

Обект на разработката са резултати от изследване на отдалечени 
обекти при различна яркост на фона с определени коефициенти на 
светоразсейване.  

Получените стойности и отношението на контраста на образа 
към светоразсейването е представено в графичен вид. Наблюдава се 
връзка между нарастване на коефициента на светоразсейване и 
намаляване на яркостта на образа. От представената графика се вижда, 
че освен намаляване на контраста на образа с нарастване на 
коефициента на светоразсейване  , контрастът |К  на регистрирания 
образ рязко спада над яркост на фона (24... 30) cd/m2  т. е. зададеният 
контраст на фона спрямо обекта 0,3 не осигурява качествен образ на 
наблюдавания отдалечен обект. Следователно при определен контраст 
на обект спрямо заобикалящия го фон, контрастът на регистрирания 
образ |К  се намалява с нарастване на коефициента на светоразсейване. 
При яркост на фона в диапазона от 10-2 до 103 cd/m2  се установява, че 
при нарастване на стойността на яркостта на фона, при постоянен 
контраст на фона и обекта К = 0,3, контрастът на образа стремително 
спада.  
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Abstract 
The paper presents the results from a study aiming to assess the relationship 

between spectral data from the satellite sensor Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) and five forest attributes measured in 29 plots in 
coniferous stands in the Rila Mountain. Biomass, volume and canopy cover showed 
moderate correlation with the radiance in the near-infrared band. Stand density was 
weakly correlated with spectral data, and basal area did not show statistically significant 
correlation. The relationship between ground-based and satellite data was modelled by 
ordinary least squares (OLS) and reduced major axis (RMA) regression. The models for 
predicting the different forest attributes had relative standard error of estimate between 
14.4% (for canopy cover) and 51.8% (for volume). 

 
 

1. Introduction 
 

The information demand for different forest attribute data used to 
characterize productivity, structure and environmental functions of forests 
have increased in the recent years, along with the need for sustainable forest 
management. Remote sensing offers increasing variety of data types and the 
potential of these data for assessing forest characteristics is now extensively 
studied (Lefsky et al., 2001). Optical remote sensors are the most commonly 
used for forest research. Sensors like NOAA AVHRR are very useful to 
assess forest biomass at global scale (Dong et al., 2003). For studies at 
larger scale, the use of high-resolution data, such as Landsat, ASTER or 
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SPOT is needed. These sensors are suitable to map the highly fragmented 
forests in Bulgaria. 

Forest attributes cannot be measured directly by remote sensing 
methods. However, they are related with stands’ physiognomy and 
architecture, which in turn influence the reflectance characteristics captured 
by optical sensors (Franklin 2001). The reflectance in different spectral 
bands is correlated with ground-measured forest attributes, allowing their 
assessment and mapping by multispectral images. This empirical approach 
is widely used by the remote sensing community (Muukkonen and 
Heiskanen, 2005; Zheng et al., 2004; Hall et al., 2006). 

To determine correlations, ground data at both plot level (Anaya et 
al., 2009; Healey et al., 2006) and stand level are used. In this work, data 
from a set of ground plots are used, because this allows gathering data for 
more forest attributes than these available in the stand datasets provided by 
forest authorities. 

Coniferous forests in Bulgaria cover over 1.2 million hectares, which 
represents 31 % of the forest area (NSI, 2008). These forests are very 
important not only as a considerable timber resource, but also for their soil 
protecting, water regulating and other ecological functions. To characterize 
and manage them, information for many parameters is required. 
Dendrometry parameters describing the overstory layer, for example canopy 
cover, density, basal area, volume and biomass, are most commonly 
measured and used in practice. These parameters are related with many 
processes and forest functions; for example, canopy cover affects surface 
runoff and natural regeneration of stands (Raev, 1980; Stoyanova, 2006). 
Recently, increasing attention has been paid to the assessment of forest 
biomass for ecosystem productivity and carbon cycle studies (Houghton, 
2005).  

Information about forest attributes is obtained from the forest 
inventory, which provides accurate and relatively exhaustive data on a 
regular basis. In Bulgaria, forest inventories are carried out usually at ten-
year intervals and data are gathered on stand level. Because of its flexibility 
(possibility for more frequent updates over arbitrary territory), remote 
sensing will be used in future more often as an additional source of forest 
information. 

The objective of the study is to assess the relationship between some 
commonly used forest attributes and the spectral data from the Advanced 
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Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 
instrument onboard the Terra satellite for coniferous forests. 

The study area comprises part of the north-west section of the Rila 
Mountain and falls within the boundaries of the Govedartsi forestry section 
withn the Borovets State Forestry. The region features several types of 
coniferous forests (Petkov et al., 1966), comprising mainly Scots Pine 
(Pinus sylvestris L.) and Norway Spruce (Picea abies (L.) Karst.) and more 
rarely, Silver Fir (Abies alba Mill.) and Macedonian Pine (Pinus peuce 
Griseb.). 

 
2. Materials and methods 
2.1. Data 
 

This study uses two types of data – ground-based and satellite. 
Ground-based data comprise measurements carried out in 29 test plots. The 
measurements were carried out in 2009 and 2010, whereas the test plots 
were distributed throughout the territory, so that stands of various age and 
biomass were comprised. Accounting for the inevitable errors during 
satellite images’ geometric correction, the aspiration in specifying the test 
plots was that they fell among homogeneous stands, far from roads, cuttings 
or other features. Depending on the trees’ age and density, the plots were 
sized between 5x5 m and 30x30 m and were commensurate with the 
ASTER pixel size. In each plot, the species and the diameter at breast height 
(dbh) of all trees higher than 2 meters were marked. The trees’ height was 
measured by a heightmeter, whereas only in some plots, the heights were 
estimated by a stand height curve. The collected data were used to calculate 
the basal area (m2/ha), the density (pcs/ha), the stem volume (m3/ha) and the 
biomass (t/ha). The volume and the biomass were calculated by methods 
described by Beruchashvili and Zhuchkova (1997). In it, the stem volume is 
found as a function of the height, the breast diameter, and the stem form 
quotient. The biomass is calculated by multiplying the stem’s volume by the 
density of the relevant tree species, adding to it the biomass of the branches, 
leaves and roots, determined as a percent of the stam’s mass for the relevant 
tree species. Moreover, for each plot, the canopy cover was determined 
based on photos taken by a digital camera assembled on a tripod and 
levelled so that the optical axis was vertical (Cohen et al., 2003). The photos 
were taken by a standard zoom lens, adjusted so as to ensure a view angle of 
30° along the frame’s short side. On the smaller test plots, one photo was 
taken in the centre of the plot, and on the larger test plots – four non-
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overlapping photos were taken. The canopy cover percent was determined 
by a round pallette (of diameter equal to the length of the frame’s short side) 
imposed on the frame’s centre. The statistical description of the data 
collected from the test plots is presented on Table 1. 

The ASTER image used for the analysis dates from 1 October 2008 
and features processing level 1А. Regretfully, in the images obtained after 
April 2007, the bands from the short-wave infrared range are unusable on 
account of a fault in the SWIR sensor. Therefore, the analysis uses only the 
three bands from the visible and near-infrared range (VNIR) (the thermal 
bands are not subject to this study). The three VNIR bands (band1-green 
(0.52-0.60 μm), band2-red (0.63-0.69 μm) and band3- near-infrared (0.76-
0.86 μm)) were orthorectified in the ENVI software product as one HDF 
file. For the purpose, the SRTM digital elevation model (DEM) was used, 
with cell size of 90 m (USGS, 2006) and 9 GPS ground control points, 
identified on the red band. The orthorectification error was 2.2 pixels. ENVI 
applied automatically the calibration coefficients provided in the HDF file 
and converted the data into 32-bit radiance values (W/m2/sr/μm).  The 
image was resampled after the nearest neighbour method and had pixel size 
of 15 m. 
 
          Table 1. Statistical description of the data collected from the test plots 

 Min Max Mean St.dev. 

Volume (m3 ha-1) 81 983 480,0 287,1 
Biomass (t ha-1) 41 518 252,3 150,9 
Density (# ha-1) 175 19200 3078 5030,9 
Basal area (m2 ha-1) 23,2 84,4 49,4 16,3 

Canopy cover (%) 51,1 96,4 76,9 13,9 

 
2.2. Data processing and analysis 
To assess the relationships between ground-measured parameters 

and satellite data, the radiance values from the image’s three spectral bands 
for the relevant pixel in which each test plot falls were derived. Apart from 
the three spectral bands, to assess the forest attributes, two spectral indices 
were used as well: Normalized Difference Vegetation Index (NDVI = 
band3-band2/ band3+band2) and Simple Ratio (SR = band3/band2) (Tucker 
1979).  

The relationship between ground-based data and satellite variables 
was assessed through the correlation coefficient (r) (Table 2) and through 
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graphs (Figure 1), after which for part of the forest attributes, regression 
models were developed. Models were developed only for the canopy cover, 
the biomass and the volume, since it was established that the relation of the 
basal area and stand density and the ASTER data is insignificant (Figure 1, 
Table 2). 
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Fig. 1. Scatterplots of ground-measured forest attributes against the corresponding 
satellite variables, most strongly correlated with them. 
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To model statistically the relationships between forest attributes and 
spectral data, linear regression analysis was used since the established 
relationships were linear or close to the linear. Two types of regression were 
tested – the traditional ordinary least squares (OLS) method and the reduced 
major axis (RMA) method. The reduced major axis regression is used, when 
the measurement errors in the independent variable should be accounted for. 
Regression analysis by this method was made using a free-of-charge web-
based application (Bohonak and Kim van der Linde, 2004). 

To predict each forest attribute, the three spectral bands and spectral 
indices were tested consecutively as independent variables. In the final 
version, the band or index for which the coefficient of determination (r2) 

was highest was chosen. With all forest attributes, the best predictor was the 
spectral band or index which is most strongly correlated with them. 
Addition of a second independent variable did not improve the models. 

As predictors in the models, the third band (x3) and NDVI (xNDVI) 
were used. The volume and the biomass models have the following form: 
(1)  3* xbay  ,        

     
and this for the canopy cover is: 
(2) NDVIxbay *  ,        

    
where a and b are regression parameters. 
 

2.3. Validation 
 

To assess the accuracy of regression models, cross validation 
procedure was used. In it, the value of each test plot is predicted based on 
the observations from the other plots. This is necessitated by the small 
volume of the sample which does not allow part of it to be allocated for 
validation. The accuracy of the models was assessed by the standard error of 
estimate (s): 

(4) 
 

)2(

2




 

n

yy
s ,        

    
where: 
y is the actual value, y′ is the predicted value, and n is the number of 
observation pairs. To allow for comparing the errors between the forest 
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parameters, the standard error of estimate was also presented as a percentage 
of the parameter’s mean actual value (sr). 
 

3. Results 
 

The radiance in the near infrared band (band3) is most strongly 
correlated with the volume and the biomass measured on the plots, the 
correlation coefficients being accordingly -0.60 and -0.62 (Table 2). The 
strongest correlation with canopy cover is demonstrated by NDVI (r=0.67). 
The density and especially, the basal area, demonstrate very poor correlation 
with all satellite variables. In all cases, the correlation coefficients are not 
high which is also prompted by the scattered distribution of the graph points 
in Figure 1. A relatively clearer linear relationship is observed only between 
canopy cover and NDVI. 
 
Table 2. Correlation coefficients of forest attributes and spectral data 
 band1 band2 band3 NDVI SR 
Volume (m3ha-1) -0.467* -0.451* -0.603*** -0.453* -0.480** 
Biomass (t ha-1) -0.497** -0.490** -0.618*** -0.449* -0.475** 
Basal area (m2ha-1) -0.136 -0.234 -0.211 -0.072 -0.123 
Density (#/ha) 0.389* 0.432* 0.373* 0.245 0.224 
Canopy cover (%) 0.247 0.109 0.553** 0.667*** 0.655*** 

*p < .05   **p < .01   ***p < .001  
 

Table 3 presents the parameters and the accuracy assessments of 
traditional regression models (ordinary least squares method) for the three 
forest attributes most strongly correlated with satellite data. Satellite spectral 
data explain only between 36% and 45% of the variations of the three forest 
attributes, the canopy cover model featuring the highest r2, while timber 
volume coefficient of determination is lowest. The relative standard error of 
estimate varies between 13.7% and 48.6% for the different parameters. The 
cross validation results provide somewhat higher values for the relative 
standard error of estimate. 

Table 4 presents the regression results after the RMA method. 
Again, the canopy cover model features the smallest error, and the stem 
volume model features the greatest error. During the validation, as well as 
during the modelling itself, sr are higher with this type of regression, than 
with the ordinary least squares regression. 
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Table 3. Results from the ordinary least squares (OLS) regression 
 Model  Validation 
 Parameters* r2 s sr  s sr 
Volume (m3ha-1) a =1342.1 

b =-20.3 
0.36 233.3 48.6 248.4 51.8 

Biomass (t ha-1) a =717.4 
b =-10.9 

0.38 120.8 47.9 128.6 51.0 

Canopy cover (%) a =21.5 
(p=0.09) 
b =135.2 

0.45 10.5 13.7 11.1 14.4 

* The p values lower than 0,001 are not shown; s-standard error of estimate; sr-
relative standard error of estimate. 

 
Table 4. Results from the reduced major axis (RMA) regression. 

 Model  Validation 
 Parameters r2 s sr  s sr 
Volume (m3ha-1) a =1911.0 

b =-33.7 
0.36 260.7 54.3 276.9 57.7 

Biomass (t ha-1) a =1004.0 
b =-17.7 

0.38 134.3 53.2 142.5 56.5 

Canopy cover (%) a =-6.1 
b =202.5 

0.45 11.5 15.0 12.1 15.8 

 
4. Discussion and conclusion 
4.1. Correlations 

 

All considered characteristics of the stand except for the basal area 
are statistically significantly correlated with at least one of the three ASTER 
bands. Nevertheless, the values of r are low, since no strict linear 
relationship is observed (Figure 1). The near-infrared band appears to be the 
best volume and biomass predictor. On the overall, the spectral indices 
NDVI and SR manifest significantly lower correlations with forest attributes 
compared to the spectral bands themselves. Only canopy cover is strongly 
correlated with NDVI. 

The volume and the biomass of the studied coniferous stands are 
negatively related to spectral bands and indices. With growth of the trees 
and increase of the forest’s age, the reflectance in the visible spectrum range 
decreases. The same holds for the reflectance in the near-infrared range, 
although green vegetation is a good reflector in this part of the spectrum. 
The reason for this tendency is that the reflectance in the near-infrared range 
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is strongly affected by the shadows between the individual tree crowns, 
which take shape and become thicker with increase of the forest’s age. 
Canopy cover is positively correlated with spectral bands. This contradicts 
previous studies (Hall et al., 2006), where negative correlation has been 
established. The discrepancy may be explained by the different structure and 
peculiarities of the forests in the examined regions. In this study, forests 
with great (70-80%) canopy cover prevail, while the stands examined by 
Hall et al. (2006) feature mostly canopy cover between 30 and 60%. 
Actually, the correlation established in this study represents only the interval 
for canopy cover between 50 and 100%. The physical explanation of the 
observed positive correlation is related with the fact that the greatest canopy 
cover is typical for young planted stands which look bright on the image. 
The forests with smaller canopy cover look darker, since these are mostly 
mature stands where the shadowing of the adjacent crowns and soil is 
strong. 

 
4.2. Assessment of the regression models 

 

To model the relationships between forest attributes and spectral 
characteristics, liner regression was used. The obtained standard errors of 
estimate are high, but close to those from previous studies (Hyyppä et al., 
2000). Thus, for instance, the non-linear model used by Muukkonen and 
Heiskanen (2005) to predict volume features relative RMSE error of 44.8% 
(calculated using independent data), while in this study, the relative standard 
error of estimate is 51.8 % (Table 3). In the first case, however, the authors 
use data at stand level. 

The cross validation of the biomass assessment model showed that 
the relative error is 51%. For comparison, the error with a similar study 
using data from Landsat TM is 47% (Lefsky et al., 2001). Canopy cover 
assessed using ASTER data has relative error of 14.4%. For comparison, 
Hall et al. (2006) model the canopy cover with relative RMSE error of 12%, 
using bands 3 (0.63-0.69 μm), 4 (0.75-0.90 μm) and 7 (2.09-2.35 μm) of 
Landsat ETM+. 

 
4.3. Comparison of both regression methods 
 

The accuracy of the models, discussed in the previous section, refers 
to the results from the ordinary least squares regression. The use of the 
reduced major axis (RMA) method results in greater standard errors which 
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might be expected. Nevertheless, RMA regression is often used with 
satellite data to determine different forest characteristics (Healey et al., 
2006). The advantage of this method is that, with it, the measured quantity 
variance is preserved during its modelling (Cohen et al., 2003).  As may be 
seen from Figure 2, with the ordinary least squares  method, the modelled 
biomass values feature smaller variance compared to the real ones. On the 
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Fig. 2.  Measured versus modelled biomass; (a) after the ordinary least squares 

method, and (b) after the reduced major axis method 
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other hand, with the reduced major axis method, the variation of the real 
values is preserved during modelling. Cohen et al. (2003) also point out that 
when there are errors in the measurement of both the independent and the 
dependent variable, it is not reasonable to use the ordinary least squares 
method. This is exactly the case when applying remote sensing to determine 
forest vegetation characteristics, since errors are observed both in ground-
based data, as well as in the reflectance measured by the satellite sensors. 
Both methods have their advantages and disadvantages; therefore, they are 
used simultaneously in remote sensing. 

*** 
The established correlations between the attributes of coniferous 

forests in the Rila Mountain and spectral data from the ASTER satellite 
sensor comply with the results under similar conditions in the boreal forests 
of Europe and North America. Most forest attributes are most strongly 
correlated with the radiance values in the near-infrared band. The absolute 
value of the maximal correlation coefficients for the various parameters 
varies between 0.23 (for the basal area) and 0.67 (for the canopy cover), 
while the relative standard errors of estimate lie in the interval between 
14.4% (for the canopy cover) and 51.8% (for the volume). The results show 
that ASTER data may be used with the greatest fidelity to assess the canopy 
cover of coniferous forests in the region. The achievement of more accurate 
assessments, with admissible error levels for various applications, requires 
improvement of data geometric precision, and the use of greater number of 
spectral bands. Studies show that predictions accuracy increases when, 
besides spectral data, additional information is used, such as stand age map 
(Zheng et al., 2004) or canopy cover map. These possibilities will be 
examined in a future publication. 
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ИЗСЛЕДВАНЕ НА ВРЪЗКАТА МЕЖДУ НЯКОИ 
ТАКСАЦИОННИ ПОКАЗАТЕЛИ НА ИГЛОЛИСТНИ 

НАСАЖДЕНИЯ И СПЕКТРАЛНИТЕ ДАННИ ОТ САТЕЛИТНИЯ 
СЕНЗОР ASTER 

 
П. Димитров, Е. Руменина 

 
Резюме 

В статията са представени резултатите от проведено изследване 
за оценка на връзката между спектралните данни от сателитния сензор 
Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) и пет таксационни показателя, измерени в 29 пробни 
площадки в иглолистни насаждения в Рила планина. Биомасата, 
обемът и склопеността показват умерена корелация с яркостта в 
близкия инфрачервен канал. Гъстотата на дървостоя е слабо 
корелирана със спектралните данни, а кръговата площ не показва 
статистически значима корелация. Връзката между наземните и 
сателитните данни е моделирана с помощта на регресионен анализ по 
метода на най-малките квадрати и на редуцираната главна ос. 
Съставените регресионни модели за оценка на отделните таксационни 
параметри имат относителни стандартни грешки на оценките в 
интервала от 14,4 % (за склопеността)  до 51,8 % (за обема).  
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Abstract 
Parking is an integral part of the traffic system everywhere. Provision of parking facilities 
to meet peak of demands parking in cities of millions is always a real challenge for traffic 
and transport experts. Parking demand is a function of population and car ownership 
which is obtained from traffic statistics. Parking supply in an area is the number of legal 
parking stalls available in that area. The traditional treatment of the parking studies 
utilizes data collected either directly from on street counting and inquiries or indirectly 
from local and national traffic censuses. Both methods consume time, efforts, and funds. 
Alternatively, it is reasonable to make use of the eventually available data based on 
remotely sensed data which might be flown for other purposes. The objective of this work is 
to develop a new approach based on utilization of integration of remotely sensed data, field 
measurements, censuses and traffic records of the studied area for studying domestic 
parking problems in residential areas especially in informal areas. Expected outcomes 
from the research project establish a methodology to manage the issue and to find the 
reasons caused the shortage in domestics and the solutions to overcome this problems. 
 
 

Problem 
 

Parking arrangements in urban areas are usually problematic since parking 
demand is always growing in accordance with social and economic 
development while parking supply is limited to the available spaces on the 
streets which are originally provided for relatively low traffic volumes of 
the early development stages. For all types of land-use this problem is 
markedly remarkable and especially in residential land-use where the streets 
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are practically planned and designed with relatively narrow carriage ways. 
Consequently, parking demand and parking supply has to be seriously 
investigated for both existing and planned residential areas specially in 
developing countries like Egypt. Egypt's population still grows - the annual 
population growth rate was 1.70 per cent by 2010. Also, the increase in car 
ownership levels creates parking problems and affects liveability in 
residential areas. All of these leads to issues and shortage of on-street 
parking makes problems for residents. This problem will be very 
complicated in the future if a policy and solution will not be established. In 
this study we provide insight in both parking supply and demand in 
residential areas and explore possible solutions.  
 

Overview 
 

Photogrammetry has been in studying of moving, automobiles speed in a 
traffic control system. An automobile on the highway is photographed from 
a police automobile behind. Hallert concluded that photogrammetry can 
doubtless be of great value for the practical application to traffic control 
(Hallert, 1971). Also, photogrammetry has been applied in the 
reconstruction of traffic accidents. Wolf and Janseen concluded that 
photogrammetry assumes an extremely important role in accident 
reconstruction since the above described accident related information 
quickly changes or disappears altogether (Wolf and Janseen 1980). 
Photogrammetry and Parking Studies, Aerial photography has been used to 
collect the necessary data for domestic parking (El-Nokrashym and et al ., 
1992; Ramzi, 1995). The application of photogrammetry in demographic 
studies deals with the residents as individuals of the population. However, in 
parking studies residents are further viewed as road users and the 
surrounding spaces will be viewed as spaces also available for traffic 
purposes. The traditional treatment of the parking studies utilizes data 
collected either directly from on street counting and inquiries or indirectly 
from local and national traffic censuses. Both methods consume time, 
efforts, and funds. Since the successful launch of very high resolution 
sensors, especially IKONOS-II with 1 m Ground Sample Distance (GSD) 
and QuickBird with 0.61 GSD, many researchers have considered them as 
possible substitutes of the classical aerial photos used for cartographic 
purposes at large scales (Fraser, 2002; Kay et al., 2003; Chmiel et al., 2004; 
Pecci et al., 2004). Satellite remote sensing has displayed a large potential to 
obtain information on urban housing development state. Without this 
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information on urban housing development state, an effective urban 
planning is hardly possible. Satellite data less than 1 m spatial resolution are 
available now. Satellite data have been used to detect the changes of large 
land-use areas (Jensen et al., 1993; Macleod and Congalton, 1998; Ridd and 
Liu, 1998; Prakash and Gupta, 1998). QuickBird imagery are accurate 
enough for mapping purpose up to scale 1:2500 (Ramzi and et al ., 2009), 
The urban planners require up-to-date  information to make and implement 
the city plans. Therefore, the maps should be produced and regularly 
updated with the changes (Ashraf, 2004; Mahmoud, 2004). 2D second order 
rectification models are more appropriate for cases where the perspective 
and elevation effects are smaller like in our case to minimize the effect of 
tilt and relief displacements (Ashraf et al, 2007; Mohamed, 2006; Elghazali, 
2005). Wang and Yun Zhang, (2003) extracted roads from Quickbird 
images using classification techniques. Qualitative analysis of visual 
interpretation of single QuickBird imagery explained that netrwork roads 
and built-up areas can be easy identify and extracted (Ramzi et al., 2008). 

 
Study area: 
 

In this study, Qabaa city Egypt, which has a flat topography is chosen as a 
test area The test area is covered by Geoeye1- , 0.5m resolution, 
panchromatic standard, date 06/09/2011. The Area of Interest  includes 
different types of man made  features and the characteristics of narrow roads 
low level of economic and high prices of land, rapid growing of population 
and lack of up to date large scale maps. 
 

Methodology  
 

The general methodology is to compare parking demand with supply to 
identify the parking deficit. Parking demand is based on the type and 
amount of various land uses in the study area. Parking supply is based on 
available on-street and off-street parking inventory in the study area.  The 
general approach to achieve the objectives of the project can be described in 
the following points:  
1. Data collection 
These will include the following items: 
   - Remotely sensed data 

VHRS images, GCPs, CPs and maps covering the study area.  
  - Census data or Demographic data of population.   



 132 

Population can be estimated from mono rectified image using many 
methods. In this study population can estimated from mono rectified image 
Geoeye-1 by producing large scale map after finding the number of 
residential building, area of each building and the average number of stories. 
Based on the average size of each apartment, the average number of stories 
and the average household size population can be estimated using equations 
(1) and (2). After collection the following items from statistics Year book 
and field: 

 

Total number of apartments/building = (Area of building average size of 
each apartment) * average number of stories                                          (1) 

 

Population = Total number of apartments * Average household size  
                                                                                                                 (2) 
 

- Traffic data: 
a. Parking stall 

a. Parking space dimensions or Parking stall: 
The area necessary for parking supply is dependent upon the space needed 
by the parked vehicles and the space needed for parking maneuver. The total 
space is dependent upon the geometry of parking stalls, i.e. parallel, angled 
or right angled parking. For on street parking in GCR, the 1977 Cairo 
University study gives average values based on field observations in CBD 
of Cairo. It could be concluded as a result of this study that for parallel 
parking, the necessary space corresponds to curb length of 4.5m per car, 
while for perpendicular parking the needed curb length is reduced to 2.5m. 

 

b. Car ownership. 
Car ownership can be determine from statistics year book year 2006 last 
census and forecasting it to year 2011. 
 

            c. Field Observation and measurements 
Average size of each apartment 
Average number of stories            
Off street parking 
legal parking supply  
illegal parking or domestic parking at night. 
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Parking Estimates: 
Parking demand can be defined as the number of vehicles expected to be 
looking for parking opportunity within a certain area for a specific time 
period. For such residential area parking demand is usually peaks at night. It 
is a function in car ownership and can be estimated from the following 
equation: 
 
Parking demand = Population * Car ownership ... equation               (3) 
 
Parking supply in an area is the number of legal parking stalls available in 
that area. This means that parking supply is the summation of on street and 
off street parking. To estimate parking supply for Qabaa city from mono 
rectified satellite image by extracting the following data: measuring all road 
widths and all curb faces lengths, and converting this lengths to parking 
spaces or cars based on roads widths and the possible type of parking 
 

Results 
 

Five ground control points (GCPs) and nine check points (CPs) has been 
used for geometric correction of .Geoeye-1 image  using  2D   second  order  
polynomial  function. The result shows that the total RMS error on GCPs 
and CPs meets the specifications of large scale maps. Image enhancement 
techniques improve the quality of an image as perceived by a human. In our 
case edge enhancement has been used. In this study, visual classification of 
buildings, parcels and roads in the study using Geoeye-1 rectified images 
and ARCGIS software has been done. In summary, the results show that:  

 All buildings can be identified by the pattern that they make in 
conjunction with the roads. Individual houses and other buildings 
can also be identified as dark and light tones.  

 All roads with their categories secondary, local access and Alley are 
visible due to their shape (straight in many cases) and their generally 
bright tone contrasting against the other darker features. Also, from 
recertified images all road widths can be measured and classified. 
After that roads function and parking type has been classified 
according to their widths.  

Table 1 shows road Categories, widths, function and Parking type. Based on 
measuring from rectified satellite image, statistical and using equation (1), 
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(2) and (3) both parking supply and demand has been estimated. Table 2 
shows parking supply and demand 
 

   Table 1.  Road Categories, widths, function and Parking type 
Road 

categoriey 
Width (m) Function Parking Type 

Secondry More than 8m Traffic and servicing 
Parallel or angled 

parking 
Local access 5-8 m Traffic and servicing Parallel parking 

Alley Less than 5m servicing Parallel parking 
Alley 

(closed) 
Less than 5m servicing Parallel parking 

 
Field Observation:  
 

 Average size of each apartment=107 m2 

 Average number of stories  = 8 story         

 legal parking supply = 3916 car  

 Off street parkingt = 134 car 

 Un occupied parking stalls (due to observations) =71 car 

 illegal parking or domestic parking at night=258 car 

   Parking types are on and off street parking and garage parking. On-
street parking is limited with streets widths and lengths it contributes 
with small ratio in parking supply. Streets are not well designed to 
meet the requirements of parking supply in informal areas. Streets 
should also allow for moving vehicles and pedestrians.  

 There are many illegal parking causes problems of moving traffic 
inside the study area especially at night. 

 There are much other activity in residential areas such commercial, 
industrial and others activity leads to there is many obstruction on 
the platform prevent pedestrians from using the curb from parking. 

 Absent of town planning this leads to narrow streets. 

 Absent of garages in most buildings.  



 135 

 High prices of land leads limited vacant space sand the height of 
buildings more than the allowable height. 

 Many residents put obstructions in front of their building prevent 
people from parking especially in front of shops. 

 

It has been found as presented in table 2 that: Percentage of error in 
calculation parking supply fro satellite image and field observations is -2%. 
Percentage of error in calculation shortage in parking stall from satellite 
image and field observations is 11.8%. Taken into consideration off street 
parking and un-occupied parking stalls rectified images lead to more 
accurate results in calculation parking demand from satellite image. 
 
 Table 2. Parking supply and demand 

Region Method 
Parking 

supply (car) 

Parking 
demand 

(cars 

Shortage 
(car) 

% error 

Rectified image 3835 4194 359 
Qabba 

Field 3916 4237 321 
11.8 

 
Suggested soluations: 
 

 Based on the rectified geoeye-1 satellite image and the produced 
large scale map, it has been suggest two vacant spaces, one in middle 
and the other in the east of the study area. This vacant spaces can be 
used as open parking garage to solve the shortage in parking spaces.  

 Law of buildings should be applied to control the problem of  
domestic parking. 

 Absent of town planning leads to creation informal residential 
regions. 

 
Conclusion: 
 

 From the research the following conclusions can be drawn: 
  
 Parking arrangements in urban areas are usually problematic since 
parking demand is always growing in accordance with social and economic 
development while parking supply is limited. 
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 Very high resolution satellite image can be used for estimation both 
parking demand and parking supply. 
 
 It has been proved that Geo eye-1 satellite imagen can play an 
important role in calculating parking demand and supply with sufficient 
accuracy. 
    
 The value of the method of collecting data from remotely sensed data 
lies in its ability to produce representative results for large study areas in a 
very short time. 
 
 Field observations are very essential to calculate parking demand. 
 

Recommendations  
 

  Re-calculating the results using stereo satellite images. 
 

 The proposed methodology with appropriate modifications should be 
encouraged to be applied for parking studies in urban land uses other then 
the residential like commercial land use, the central business districts in 
particular, industrial land use, cultural and recreational land uses, etc. 
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Дистанционни изследвания – Извличане на пътища 

  
Резюме 

Паркирането е неразделна част от системата на уличното 
движение в цял свят. Осигуряването на паркинги за задоволяване на 
потребностите от паркиране в милионните градове винаги е било 
предизвикателство за експертите по улично движение и транспорт. 
Нуждата от паркиране е функция на населението и броя на 
притежаваните коли, който може да бъде установен от статистиката на 
уличното движение. Паркинговата доставка в дадена област се 
изразява с броя на наличните законни паркоместа в тази област. 
Традиционният подход в паркинговите проучвания използва данните, 
получени пряко, чрез преброяване на улицата и запитвания, или 
непряко, от местните и националните статистически данни за уличното 
движение. И двата метода изискват време, сили и средства. Другата 
разумна възможност е да се използват евентуалните налични данни, 
получени дистанционно от спътници, изстреляни за други цели. Целта 
на настоящата работа е да се развие нов подход на базата на 
съвместното използване на дистанционни данни, полеви измервания, 
преброявания и записи за уличното движение в изследваната област за 
изследване на проблемите, свързани с паркирането в жилищните и 
особено, в неформалните области на страната. Очакваните резултати 
от изследователския проект са да се въведе методология за управление 
на проблема и да се установят причините, предизвикващи недостиг в 
паркирането в страната и решенията за преодоляване на този проблем. 
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Abstract 
Geomagnetic surveys on the territory of Sofia Airport for measuring of 

geomagnetic declination and to obtain the suitability of the sit for compass calibration pad 
are described in the paper. 

Considered is the applicability of the world geomagnetic field models, as example 
IGRF, when geomagnetic data with high accuracy are needed. 

 
 

Introduction 
 

There are tow primary objectives in performing airport geomagnetic 
surveys. The first is to determine geomagnetic declination at suitable sit and 
second to obtain the suitability of the sit for compass calibration pad. 
Geomagnetic declination is determined using  procedures developed by 
International Association for Geomagnetism and Aeronomy (IAGA) [1]. 
The suitability of the sit for compass calibration pad is assessed using the 
standards outlined in Federal Aviation Administration (FAA) of the United 
States. In Bulgaria Geomagnetic Service at National Institute for 
Geophysics, Geodesy and Geography provide airport geomagnetic surveys 
for many years.  

Because of the increased requirements for flight safety in Bulgaria 
last years teams from the National Institute for Geophysics, Geodesy and 
Geography performed measurements of the geomagnetic declination at 
many airports, including Sofia Airport [2]. Also in 2008 were carried out 
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surveys at the Sofia Airport to obtain the suitability of the sit for compass 
calibration pad. 

 
Measurement of geomagnetic declination on Sofia Airport 
 

Geomagnetic declination on the Sofia airport was first measured at 
the threshold of the runways (this is the point for take off and landing of the 
airplanes). Large anomalies were detected at the runway thresholds. For 
example, the difference between the measured declination on the eastern 
and on the western part of Sofia airport was 5240  . Our opinion is that the 
large difference is due to the concrete with substantial steel reinforcement of 
the runway. Knowing that the airplanes use the geomagnetic declination in 
the air far of the runway we decided to make the measurements away from 
the runway. At the Sofia Airport the measurements were made at the nearest 
repeat station of the Bulgarian geomagnetic repeat stations network. In this 
point the value in 2001 was 0130  . This value is reduced in epoch 2010.5 by 
using the data for geomagnetic declination changes from geomagnetic 
observatory Panagyurishte (Bulgaria) and the value is 3530  . 
 

Obtain the suitability of the sit for calibration pad on Sofia 
Airport 

  

 FAA requirements for design, location and construction of a 
compass calibration pad are detailed in FAA AC (advisory circular) 
150/5300-13 Appendix 4. The advisory circular may be obtained at the 
internet site [3].The criteria of a site location suitability in accordance with 
the AC are: 
  -The difference between geomagnetic and geography north must be 
uniform across the site. 
  - The range of declination must be less than one half degree (from 
0,3 to 3 meters above the base and 75 meters off the center). 

Section 5 of the FAA Advisory Circular provides guidelines for 
locating a suitable site for calibration pad. The general requirements for 
location are: 

 - Locate a calibration pad 90 meters from power and communication  
    cables and other aircraft. 
 - Locate a calibration pad at last 180 meters from large magnetic   
objects, such as buildings, railroad track, high voltage transmission 

 lines, or cables with direct current. 
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 - Locate calibration pad off the site of a taxiway or runway to satisfy 
    local clearances. 

 In the late spring of 2008 were carried out preliminary site checks on 
the territory of Sofia airport and as a result two sites were proposed for 
calibration of the compasses of airplanes types Airbus 320 and Boeing 737. 
The first one (Site 1) is situated at the end of taxiway K and N on the airport 
and the second one (Site 2) is the western ground for anti-icing system 
(Fig.1).  
 

             
 

Fig. 1. Site 1 and Site 2 on the Sofia Airport map 
 
On these two sites and then a magnetic total field survey was carried out. A 
geomagnetic total field survey of an existing new calibration pad is essential 
to determine the suitability of the site because preliminary checks may not 
show buried ferrous metals which can impact the magnetic field. The 
equipment used for survey was proton magnetometer PMP 5A. Procedure 
for total field survey is: 

- Mark the center point with wooden stake. 
- Make total field readings (mean value of 5 readings) at the center 

point and approximately every 5 meters along N-S and  
      E-W lines out to 35 meters. 
If the total field has a range of 75 nT over a 75 meter area, it will 

meet the FAA requirements. Total field survey results are used to rank 
potential compass calibration pad sites. Following the total field survey, a 
single site must be chosen for construction of the calibration pad after which 
a detailed geomagnetic declination survey must be made to confirm the site 
meet the FAA requirements. 

Site 1 

Site 2 
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The results from the total field geomagnetic surveys on the territory 
of Sofia airport are presented further down. 
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Fig. 2. Total magnetic filed (nT) in site1 N-S direction 
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Fig. 3. Total magnetic filed (nT) in site1 W-E  direction 
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Fig. 4. Total magnetic filed (nT) in site2 N-S  direction 
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Fig. 5. Total magnetic filed (nT) in site 2 W-E  direction 
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 On the Fig. 2 and Fig. 3 are sown the values of the total geomagnetic 
field measured along N-S and E-W lines for Site 1. As it is clearly visible 
this site do not meet the FAA requirements because the range of magnetic 
field changes in N-S direction is more than 2000 nT and in W-E direction is 
approximately 90 nT. 
 On the Fig. 4 and Fig. 5 are sown the values of the total geomagnetic 
field measured along N-S and E-W lines for Site 2. The range of magnetic 
field changes in N-S direction is approximately 55 nT and in E-W (for 14 
measurement points) is less than 30 nT and only in one measurement point 
is less than 120 nT. Probably this anomalous value has accumulated big 
measurement error caused by small local ferrous disturber and can be 
ignored. We can see that Site 2 meet the FAA requirements. The mean value 
of total magnetic field in Site 2 is 46969,4 nT and the field gradient is lese than 
of 1 nT/meter in the all area with dimension 75x75 meters . 
 As a conclusion is established that Site 2 is a suitable sit for building 
of new compass calibration pad on Sofia Airport. 
 

 About using of the world models for obtaining of geomagnetic 
field component values    

 

A frequently asked question is: Is it possible to use geomagnetic field 
data, calculated from a world model, for example the International 
Geomagnetic Reference Field (IGRF) [4], in airport practice? As we know 
this is a global model of the geomagnetic field. It allows spot values of the 
geomagnetic field vector to be calculated anywhere on the Earth's core out 
into space. But for obtaining of the geomagnetic vector component values in 
a concrete point the model is not very accurate. We will demonstrate this 
further down. In epoch 2000.5 the model (IGRF-11/2010) for the spot of 
Geomagnetic Observatory PAG gives for geomagnetic declination a value 

63,2130   and for epoch 2005.5  - 42,4230  , but the measured thru values are 

5,0030  (2000.5) and 6,2230   (2005.5). The absolute error is more than 

12,00   in both cases. Similar are the results and for the total field, in epoch 
2000.5 the model (IGRF-11/2010) for the spot of Geomagnetic Observatory 
PAG gives value 47011 nT and for epoch 2005.5  - 47166 nT. Thus we see 
that the model IGRF is not applicable when high accuracy is needed. It 
became clear that this is very important especially for obtaining of 
geomagnetic declination by the model anywhere on the Earth's core. 
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We will introduce here an alternative way for obtaining of the 
geomagnetic field elements values at Sofia Airport in the next ages after the 
epoch of measurements. For example for the element geomagnetic 
declination we obtained in epoch 2001.5 the measured declination value at 
the airport is 0130   and in Geomagnetic Observatory PAG is 4030  . The 
value difference between these tow space points is 6000  .This difference is 
stable in relatively long time interval and thus we can obtain the value at the 
Sofia Airport in some next epoch by reduction of the observatory value for 
this same epoch by mentioned above 6000  . For example in 2007.5 
observatory declination value is 4,3230   and at the Sofia Airport reduced 

value therefore is 4,3830  . This method is applicable with small error for 
periods close to 10 years after the epoch of measurements, but for obtaining 
of values for longer time interval repeat measurements at the territory of 
airport are necessary. 
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ГЕОМАГНИТНИ ПРОУЧВАНИЯ НА ТЕРИТОРИЯТА  
НА ЛЕТИЩЕ СОФИЯ 

 
Б. Сребров, Ил. Чолаков 

 
Резюме 

В работата са описани геомагнитни проучвания на територията на 
летище София за определяне на геомагнитната деклинация в различни епохи 
и за намиране на подходяща площадка за калибриране компасите на самолети 
от типове Airbus 320 и Boeing 737. Разгледана е и приложимостта на 
световните геомагнитни модели, като например IGRF, в случаи на 
необходимост от геомагнитни данни с висока точност. 
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Abstract 
In this paper a methodology for defining and assessment of information efficiency, 

data quality and their georeferencing is presented. The criteria, which the presented 
methodology is based on, are related to specific tasks in the implementation of ecological 
monitoring.  

 
Keywords: microsatellite, data quality, information efficiency, ecological 

monitoring 
 
 

Introduction 
 

Microsatellites are high technology devices both for space 
investigation and Earth observation. By using low-cost nano-, micro-, and 
small satellites, it is possible to solve many theoretical and applied scientific 
problems. These tasks have been solved so far by using the “everything in 
one” technology based on big space satellites. 

Microsatellites can be defined as “Flying Space Intelligent 
Multisensors”. They are data sources for space information of different 
efficiency and quality. The usage of microsatellites for solving numerous 
theoretical and applied scientific problems is directly related to the 
information efficiency and the quality of data received on the basis of 
measurements. 
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 The problem for defining information efficiency and quality of the 
data obtained from the measurements is significant because it is directly 
correlated to the technological characteristics of the onboard sensors and 
their functional applications [1]. 

 
Methodology for defining and assessment of information 
efficiency, data quality and their georeferencing 
 

Definition of the criteria for assessment  
On the basis of the observed phenomena and processes such as fires 

and floods and their impact on environment the following criteria for 
assessment of information efficiency and space data quality are defined: 

 The received data should be with a relevant space resolution 
ensuring the detection and recognition of the phenomena; 

 Since fires are connected with temperature variations, the 
space data must have the relevant spectral and radiometrical 
resolution; 

 In case of flooding, atmospheric pollution, and oil spill, the 
data should have a high resolution time; 

 For a faster localization of these phenomena, their 
georeferencing should be made in a near real-time mode.  

 

Description of the methodology 
The parameters that define the information efficiency and data 

quality are as follows: 
 Space resolution 
 Radiometrical resolution 
 Spectral resolution 
 Temporal resolution  

The space dynamics of a specific phenomenon can be approximately 
presented by the following functions: 

 

(1) Δ(X,t)= Xi(t)- Xs    
 

(2) Δ(Y,t)= Yi(t)- Ys    
 

where Xs = image resolution on the axis Х  
          Ys = image resolution on the axis Y  
          Xi (t) and Yi (t) = temporal variations of the dimensions of the 
observed phenomenon.  
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If the values of the functions Δ(X, t) and Δ(Y, t) are positive, the 
phenomenon can be detected and identified on the image. 

Spectral and radiometrical resolutions are predefined and correspond 
to previously known spectral characteristics of the observed 
phenomenon.The assessment is usually made by comparing the data with 
other data received from other sensors [1, 3]. 

The assessment of the temporal resolution is made on the basis of 
the period of data updating compared with the duration of the time interval 
in which the phenomenon is observed. If the time period of receiving of new 
data is less longer than the time duration of the observed phenomenon, the 
data are defined as efficient [4]. 

In order to achieve a near real-time mode, the following scheme can 
be applied in the data georeferencing:  

1. Simulation rasters with the same space resolution as the real 
images are generated on the basis of ground control points with fixed 
coordinates.  

2. The coordinates of the images are georeferenced to the relevant 
nudes of the coordinate grid on the earth’s surface on the basis of the 
coordinates of the pattern rasters.   

3.  If there is a displacement of a shot image from the pattern image 
due to the   orbital deviation, the georeferencing is implemented on the basis 
of the relevant identical points with the same coordinates.  In this case, it is 
not necessary to generate a new coordinate grid but only to add or to remove 
nudes from the base coordinate grid.   

The image displacement ΔX and ΔY to the base image and the 
relevant identical points IP1 and IP2 are shown on Fig. 1. 

 

 
 

Fig. 1. Image displacement to the base image 
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 The validation of the methodology for defining and assessment of 
information efficiency and data quality on the basis of the space, spectral, 
and radiometrical resolution is made by means of a specially-designed 
device for testing the quality of a multispectral sensor for microsatellite. The 
results are presented on Fig. 2 [2]. 

 

 

 

Fig. 2. The left part of the test image indicates the resolution quality of the limb of 
the image, whereas the right part – the resolution quality of its centre. 

 
The methodology for achieving a near real-time mode in data 

georeferencing has been used for the Web-based ecological monitoring of 
atmospheric pollution in different parts of the territory of Bulgaria [4]. 
 

Conclusion 
 

1. Criteria for defining and assessment of information efficiency and 
data quality on the basis of measurements as well as data georeferencing by 
using microsatellite platforms for ecological monitoring have been 
formulated. 

2.  A methodology for defining and assessment of information 
efficiency, data quality and data georeferencing has been proposed.  

3. The results of the implementation of the proposed methodology 
are positive, which proves its practical applicability. 
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ОЦЕНКА НА ИНФОРМАЦИОННАТА ЕФЕКТИВНОСТ И 
КАЧЕСТВОТО НА ДАННИТЕ ОТ МИКРОСПЪТНИЦИ ЗА 

НУЖДИТЕ НА ЕКОЛОГИЧНИЯ МОНИТОРИНГ 
 

Р. Недков 
 

Резюме 
 В настоящата работа е предложена методика за определяне и 
оценка на информационната ефективност, качеството на данните от 
измерванията и тяхното георефериране. Критериите, на които се 
базира предложената методика, са свързани с определени задачи при 
извършване на екологичен мониторинг. 
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Abstract 
A structured schema is synthesized and a preliminary function of the the optimal 

filter of the control system of the self-aiming unmanned air vehicle (UAV) with fixed 
coordinator using some statisitical methods was obtained .  

The conducted investigations showed that if the UAV itself is included in the 
control system the analysis of the aimed circle will be significantly relieved, as the control 
system of the UAV with fixed coordinator can be regarded as a following system. 

 
 
Introduction 

 

In a number of leading in martial relation countries a deep 
transformation of the armed forces is done in order to adapt them to the 
threats and the challenges in the new information century. It is in close 
contact to the new military strategy, which infers that the contemporary war 
should be conducted in short term and with minimal losses via delivering 
highly precise strikes from air-space or water-space without immediate 
contact with the opponent. This approach is known as “distant (non-contact) 
war”. It becomes possible due to the successful development of new 
armaments specimen and military techniques which have: improved 
concealment and safety, global reconnaissance and surveillance systems, 
navigation and target indication, highly precise striking means and control 
systems, built on network principal integrated in common reconnaissance-
striking (information-striking) systems. 
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The distant war determines principally new requirements towards 
the providing to the armies and forces with contemporary armaments and 
techniques, including highly effective control, reconnaissance and 
communication systems. 

In this regard great attention has been brought to the development of 
the aero-space component of the armed forces as well as the concept of its 
use. As plans up to 2020 for development of the military forces of the 
NATO member countries show, one of the main streams of the MAF 
(military air force) development is elaboration and acceptance of armaments 
of unmanned aviation complexes and systems with diverse purpose 
(including reconnaissance-striking unmanned complexes and their control 
systems) [2, 4]. 

In the late sixties in Republic of Bulgaria begins the development of 
unmanned air vehicle (UAV) of type radio-manipulated targets. On a later 
stage the development of reconnaissance UAV steps in and it continues up 
to these days. In certain circumstances the reconnaissance UAV can be 
transformed into reconnaissance – striking ones. Therefore the investigation 
and the synthesis of their control systems and their elements is a key phase 
of their development. 

As pointed in [7, 8] for hitting enemy targets with reconnaissance – 
striking UAV it is essential that the information received by the television or 
infrared camera installed on the UAV’s board to be real-time, in order to 
adjust its position according to the longitudinal axis of the UAV from 0 to 
90 degrees. This information is monitored on a screen by an operator in a 
land control station. Target-lightening systems are used for improving 
visibility of targets.  

When the operator discovers enemy target in the received TV image, 
they aim the unmanned air vehicle toward it. In this way the control system 
(CS) of the UAV starts receiving and processing the signal reflected by the 
target. In case of high enough amplitude of the accepted information signal 
the CS starts navigating the UAV autonomously until hitting the target. 

At the combat UAV, that reaches the target using controlled and 
uncontrolled rockets or through straight shot in it (kamikaze type) standing 
coordinator could be used, which longitudinal axes coincides with the 
longitudinal axes of the unmanned air vehicle. That allows straight-direction 
methods where the UAV long axes are directed to the target during the 
whole flight to be used. 
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In this case UAV control system could be analyzed as system 
consisting of coordinator, which measures the target angle position 
according to the UAV long axes and unmanned vehicle, which eliminates 
that angle of non-coherence, trying to keep it zero [5]. 

 
Optimum Control System 

 

CS should be optimal to be able to define the co-ordinates of the 
target with minimal possible mistake [7]. During the design and synthesis of 
the CS usually is needed that UAV characteristics, enemies’ targets, 
informational signals and possible interferences are defined. The structure 
and scales of CS are defined according to those characteristics. The size of 
the linear diversion of UAV from the target center is defined as well at the 
moment when the unmanned vehicle hits the area, which is perpendicular of 
its flight path and consists as a spot the target center. 

In practice, however, there is never a whole set of needed 
information but only some statistic characteristics. That’s why the 
synthesized CS should be able to change its parameters depending on the 
conditions of using the UAV, so that its accuracy in general to be equal of 
the maximum possible for the particular situation. 

Due to that above during the design of the optimum CS of self-
aiming UAV with fixed coordinator, statistic methods are most reasonable 
to be used – such as the method of the maximum aposterior possibility and 
the method of maximum function of probability [1]. 

In the case above the measured target angle depends on many 
accidental factors such as: direction, maneuvers, target and UAV 
autowaverings, UAV target accuracy in the moment of attack, turbulence, 
etc. All those factors are accidental and their influence over the stochastic 
process leads to its usual distribution. That’s why can be accepted that the 
measured angle of the attacked target (t) is commonly distributed. 

When the method of maximum aposterior possibility is used the 
measured parameter value (the angle co-ordinate of the attacked target) is 
worth due to chosen values of the entering realizations of the received 
information signal. Therefore for optimal valuation of the unknown 
parameter (the measured angle)  is taken the value exit, where the 
aposterior possibility Pps() has its maximum.  

When the method of maximum aposterior possibility is used a block-
diagram of the optimal coordinator is synthesized (coordinator 
measurement) such as the one shown at fig. 1 [7]. 
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Fig. 1. Block-diagram of optimal coordinator measurer 

 
The received informational signal is processed in the discriminator. 

Due to that at its exit voltage Z(t,ε) appears which is proportionally equal to 
the non-coherence. It comes at the entrance of the filer, which impulse-
transitional function is equal to С-1(t,). At the exit filter signal should add 
middle quantity of the measured angle middle(t), and in result of it its 
optimal value is created exit(t). To have the diagram of the measurement 
followed, this optimal value needs to be clarified, i.e. exit(t) to be proceeded 
by the discriminator.  

The aim of the coordinator is to keep the angle of non-coherence 
about to zero, i.e. to keep tight the axis of the diagram of the orientation of 
the optical system, which receives the informational signal together with 
target direction. 

During the synthesis of the optimal coordinator according to the set 
characteristics of the informational signal y(t), the measured angle (t) and 
sound n(t) need to be found optimal structural diagrams of the: 
discriminator, measurement of the optimal steepness of the pelengation 
characteristics and filter. 

Optimal discriminator structure is defined in [5] as the method of the 
function probability maximum is used, where the probability equation is 
worked out. [1]: 
 

(1) 
 

0
)t(λ

),t(yPln





, 

 

where Р[y(t),] – probability function;  =  - exit – target angle diversion 
of the flat signal discriminatory zone (angle of non-coherence); exit(t) – 
angle measured value (value of the measured angle). 



 155 

The probability function is defined by the functional of the density 
distribution of the probability of the registered signal Р[y(t)], which is 
regarded as function of the parameter of the non-coherence . 

The structural schema of the measurer of the optimal steep of the 
pelengation characteristic is defined as the second derivative of the 
probability function [1, 6]: 

(2) 
 

ji

2

ij
ε),t(yPln

A



 , 

where Ai,j –  is matrix, characterizing the optimal steep of the pelengation 
characteristic; i,j = 1,2, ... , n; y(t) = y1(t), y2(t), ....yn(t) – row vector of the 
received realization;  = 1, 2, ... ,п – column vector of the measurement 
non-coherency. 

 
Synthesis of the Optimal Filter 
 

A few methods can be used for defining the structure of the optimal 
filter, on whose output should be received the optimal value of the measured 
angle: the method of the minimum square quadratic deviation; the method 
of non-linear filtration; the method of the maximum of the aposterior 
probability, etc. In the latter, an integral equation is drawn, which defines 
the optimum impulse transition function of the filter: 

 

(3)   
t

t

11

0

),t(Rds),s(R)s(A),s(C),t(C , 

 

where )s(A  is the optimal steep of the pelengation characteristic of the 
discriminator; ),t(R   - correlation function of the information signal. 

In its general form the equation is hard to solve without specifying 
the correlation function of the information function and the optimal steep of 
the pelengation characteristic of the discriminator. Therefore it is necessary 
to describe them with statements corresponding to their physical nature. 

From experience we know that the measured angle (t) is static 
accidental process, whose correlation function depends on the difference of 
its arguments, i.e. has the form R(t-). In this case the correlation coefficient 
r(t-τ) is experimentally determined and from the received graphic is chosen 
the empiric formula which can describe it. 
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For most of the coordinate’s measurers the empiric formula of the 
correlation coefficient can be presented as [3]: 

 

(4) )t(43cose)t(r )t(36   . 
 

If taken into consideration that in small values of the time interval  
(t-) the function cos43(t-)  1, then the correlation coefficient will be 
equal to: 

 

(5) )t(36e)t(r  . 
 

Then the correlation function which corresponds to such correlation 
coefficient will be equal to: 
 

(6) )t(Be)t(R  , 
 

where  = 36 and the value of B is defined by the type of the input 
information signal. 

The function А(t) is a variable stochastic function, characterizing the 
steep of the pelengation characteristic of the discriminator. It has positive 
mathematical expectancy (ratio) and changes significantly slower than the 
correlation function R(t-). 

Therefore the integral equation, defining the impulse transition 
function of the filter can be described as: 

 

(7)   
t

t

11

0

,)t(Rds)st(R)s(A),t(C),t(C  

 

i.e. it is transformed into integral equation with different-sided core. If we 
introduce the designation C-1(t,) = g(t,) and take into account the slow 
alteration of  А(t), then formula (6) will look like:  
 

(8)  
t

t 0

)t(Rds)st(R)s,t(g)t(A),t(g . 

 

The simplest way of solving such integral equations is the method of 
consecutive approximation, i.e. 
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(9) ......)t(A),t(g)t(A),t(g),t(g),t(g 2
210  , 

 

where: 
 

(10) )t(R),t(g0  , 
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Then the first article of the row will be: 
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the second article: 
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the third article: 
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and the fourth article: 
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The common article of the row can be written in the following 
appearance, taking into account formulas from (13) to (16): 
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Thus the row which is the solution to the integral equation will have 
the look: 

 

(18) 
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Equation (18) shows that the impulse transition function of the 

optimal filter, evening the measured value of the angle of optimal 
coordinator, is presented in the form of an endless row. From practical 
consideration this entry can be significantly simplified by taking into 
account the following facts: 

- every following article in the row is  times less then the preceding  
one; 
- 1- е-(t-) < 1;  
- with increasing the number of articles in the row (its promotion to a 

degree) it becomes much smaller than one.  
Therefore, with the needed in practice precision the row may be 

restricted to just the first two – three articles. Then the impulse transiting 
function of the filter can be noted as: 
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Equation (19) can be simplified by accepting t0 = 0. This acceptance is true 
for all short-term memory systems (systems, which return to their initial 
state shortly after their reaction to external interference). It can be extended 
to the remaining systems, if taking into account that t0 represents a fixed 
moment of time, close to the moment of aiming of the UAV to the target, 
and t is the current time moment, which grows fast. In this case t - t0  t. 
When the UAV approaches the target (it is needed to have the highest 
precision for measuring its coordinates at that moment), we can consider 
that t - t0 = t. Thus the impulse transition function takes its final form: 
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 (20) 
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If we sign: 
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then instead (20) for the impulse transition function we have: 
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Using the deducted above formula (22) for the impulse transition 
function of the filter, can be synthesized the structural schema of the optimal 
filter of coordinator, whose transmission function is equal to: 
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After replacing of (22) in (23) we have: 
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If we sign Т = - 1/, then instead of (24) we have the following 
transmission function of the optimal filter: 
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Using the deducted transmission function (25) the following 
structural schema of the optimal filter, shown in fig.2 can be composed: 
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Fig. 2. Optimal filter of coordinator 

 
From it is visible that in order to achieve optimal estimation (value) 

of the measured angle, the output signal of the optimal discriminator must 
be let through optimal filter, which consists of the following units: 
integrating unit with variable magnifying coefficient, proportional to the 
optimal steep of the pelengation characteristic of the discriminator and 
dependant on the parameters of the correlation function of the input signal; 
integrating unit with variable magnifying coefficient, determined by the 
parameters of the correlation function and unit with constant delay of time s, 
equal to the time for which the impulse transition function g(t,) > 0. 

 
Conclusion 
 

At first glance the above described structural schema of the optimal 
filter looks hard to put in practice as the ratio of the measured angle -  
middle(t) should be added to the output signal of the filter (executive organs 
of  the UAV and the UAV itself). Actually, it only relieves the technical 
realization as the axis of the UAV with fixed coordinator during the flight is 
aimed at the target and its orientation in space is the same as the direction of 
the ratio of the measured angle. Thus the UAV works off only the appearing 
deviations from this angle.  

The deducted structural schema of the optimal filter shows that if the 
UAV itself is included in the control system, then the analysis of the aiming 
circle of the UAV can be relieved significantly, as the control system of 
UAV with fixed coordinator can be regarded as following system. 
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СИНТЕЗИРАНЕ НА ОПТИМАЛEН ФИЛТЪР ОТ СИСТЕМАТА 
ЗА УПРАВЛЕНИЕ НА САМОНАСОЧВАЩ СЕ БЕЗПИЛОТЕН 
ЛЕТАТЕЛЕН АПАРАТ С НЕПОДВИЖЕН КООРДИНАТОР 

 
В. Цекова 

 
Резюме 

Синтезирана е структурната схема и е получена предавателната 
функция на оптимален филтър от системата за управление на 
самонасочващ се безпилотен летателен апарат с неподвижен координатор 
като са използвани някои статистически методи. 

Проведеното изследване показва, че ако към системата за 
управление се включи и самият БЛА, то анализът на кръга на насочване 
на БЛА към целта може да се облекчи съществено, тъй като системата за 
управление на БЛА с неподвижен координатор може да бъде разглеждана 
като следяща система. 
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Abstract 
The paper presents literature survey on pulse-arc plasma welding and surfacing processes. 
Some issues related with these processes’ equipment and materials, variations, application, 
technologies, and the quality of the welded workpiece are considered. 
 
 

Introduction 
 

Plasma processes use thermal plasma energy to melt material. The attempts 
to achieve higher energy density by constricting the electrical arc date a long 
way back. One of the earliest plasma arc systems was the gas vortex 
stabilization device introduced by Schonherr in 1909. In this device, gas was 
fed tangentially into an arc-discharge tube.  
In 1922, Gerdien and Lotz designed an arc-stabilizing device by injecting 
tangentially water to the tube centre. Water whirled along the internal 
surface and was ejected in the ends. When the arc burned between carbon 
electrodes and passed through this tube, the water concentrated the arc along 
the axis, causing high current density. The term thermal plasma was first 
introduced in 1927 by the American physicist Langmuir to denote the fourth 
aggregate state of matter, i.e. the state of a gas with high dissociation and 
ionization rate, which apart from neutral atoms and molecules, contains 
positive and negative charges – ions and electrons. In 1961, the first plasma 
surface processing equipment was presented, and in 1963, the first plasma 
welding was introduced.  
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Peculiarities and characteristics of plasma welding and surfacing 
 

Plasma welding is, in substance, a development of the TIG welding process, 
however using a different mechanism to transfer thermal energy to the 
workpiece. Both TIG and plasma welding use a non-melting (tungsten) 
electrode located in a nozzle, through which the plasma-forming gas is 
passed. The arc heats this plasma-forming gas, which gets ionized, attains 
electric conductivity, and is forced out through the nozzle. This ionized gas 
is defined as plasma. The plasma jet leaves the nozzle at temperature of 
about 16,700C (30,000F) in the form of constricted concentrated jet with 
precisely controlled direction, which creates a highly favourable seam form 
coefficient (pool depth-to-width ratio). 
Compared to the TIG-arc, plasma features: 

 exceptionally high thermal power, energy density, and temperature 
of the plasma arc; 

 cylindrical form of the arc; 
 high kinetic energy of the exiting plasma jet; 

At low plasma kinetic energy, the melted metal is not blown away, which 
provides favourable conditions for the welding or surfacing technological 
processes. 
Plasma surfacing is used to lay various metals or alloys on the details’ 
surfaces to improve their operational properties. The laid on metals or alloys 
feature great hardness, wear-resistance, corrosion resistance and thermal 
resistance. The depth of the surfaced layer in a passage may reach 4-5 mm. 
Surfacing in several layers is possible. The process provides to obtain high-
quality details with insignificant spending of expensive alloy materials. 
Plasma surfacing is applied to lay copper, bronze, or other special alloys on 
the working surfaces of steel vapour-conducting fixture elements, 
chromium-nickel alloys covering internal combustion engine valves and 
more. The process is used successfully during the repair of stamps, press-
forms, rolling rolls, and other metal-processing equipment elements. 
Plasma welding and surfacing are arc processes, in which the common metal 
pool is obtained as a result of a forcedly constricted arc between a non-
melting electrode and the workpiece (direct arc) or between a non-melting 
electrode and a concentrating nozzle (indirect arc). No pressure is applied on 
the welding pool. The process may be implemented with or without 
additional metal. The arc is concentrated in an ionized plasma column 
exiting the nozzle’s end (Fig. 1). 
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Fig. 1 

The plasma-forming gas also provides protection to the molten metal and 
usually constitutes a part of the basic protection gas, which may be inert gas 
or inert gas mixture. The gas mainly used as plasma-forming gas is argon. 
Argon gets easily ionized and therefore provides for the arc’s easy ignition. 
By adding molecular gases (H2 and N2), the thermal content of the plasma-
forming gas may be increased significantly compared to pure argon (under 
the same temperature). When the hot gas collides with the relatively colder 
surface of the workpiece, as a result of atom and ion recombination, the heat 
from dissociation and ionization is given out accordingly. Thus, the arc’s 
stability is improved and the invested heat amount and the arc’s penetration 
depth into the processed workpiece is increased. 

Plasma arc is used to weld non-rusting steels, nickel alloys, titanium alloys, 
molybdenum, tungsten and more. Compared to TIG welding, the process 
features a more stable arc and more uniform weld penetration depth. 
According to its penetration ability, the method occupies intermediate place 
between electric-arc and electron-beam welding. The arc’s column has 
cylindrical form; therefore, the width of the heated surface depends poorly 
on the arc’s length. The plasma arc provides to obtain heat spot with 
constant diameter, which results in stabilization of the weld penetration 
depth. This is particularly important in thin tin welding. The change in the 
heat spot form is accomplished by using nozzles with different structure 
(Fig. 2). 
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Fig. 2 

For instance, when it is necessary to obtain an elongated heat spot in the 
nozzle (Fig. 2b), two additional openings are made through which cold 
plasma-forming gas exits, thus reducing the spot’s cross size. The use of 
such a nozzle reduces HAZ’s width and increases welding rate by up to 
50100%. Another variety in the nozzles with additional openings is the 
formation of a focusing gas flow (Fig. 2c) which constitutes gas mixture 
consisting of. Ar and He or Ar and H2, gets ionized with greater difficulty 
and thus constricts plasma.  
Plasma-forming gas is fed tangentially, which provides for proper arc 
stabilization using a small capacity. Focusing gas is fed through a concentric 
ring-like channel located between the channels of the plasma-forming gas 
and the protective gas. Focusing flow is fed at an angle with respect to the 
arc’s longitudinal axis which results in additional constriction of the arc as a 
result of its cooling. Another possibility for deformation of the heat spot is 
to use non-homogeneous magnetic field. 
 

Types of plasma arcs and plasmatrons 
 

Depending on the manner of their generation, three main types of plasma 
arcs and accordingly, three plasma processes may be identified, which are 
implemented by the respective plasma generation devices, i.e. plasmatrons: 

 plasma–arc process with open arc (direct, shifted arc); 
 plasma–jet process with closed arc (indirect arc); 
 plasma–jet–arc process with open and closed arc – combined 

process; 
 

Plasma–arc process with open arc (direct, shifted arc) 

During open-arc welding 8 (Fig. 3.) the tungsten electrode is cathode 4 and 
the workpiece is anode 6. The arc passes through water-cooled nozzle 7, 
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whereat it gets constricted. Argon is used as plasma-forming gas which, 
depending on the processed metal, may also contain hydrogen (5÷10% for 
high-alloy Cr-Ni steels) or helium (for Ti and Zr).  
 

 

Fig. 3 

 

Plasma-forming gas is fed concentrically around the tungsten electrode, thus 
also protecting it from oxidation. To provide for the arc’s lighting, voltage is 
applied on the internal nozzle, too. Through high-voltage pulses HV from 
device 2, the auxiliary (pilot) arc 5 between tungsten electrode 4 and copper 
nozzle 7 is ignited. To prevent the possible melting of the copper nozzle, 
resistance R (3) is been included in the current loop of the pilot arc. The 
pilot arc ionizes the plasma-forming gas, after which main arc 8 jumps onto 
the workpiece. After the arc has transferred to the base metal, the auxiliary 
arc is switched-off. Protective gas both protects the welding area and cools 
the arc column. In some cases, additional concentric jet of cooling gas is let 
out. The cooling of the arc’s column results in its constriction and increase 
of the thermal source’s concentration. As a result, current density around the 
arc’s longitudinal axis increases and the temperatures along the axis of the 
arc’s column reach 3,000К. This provides to weld without flanging widths 
much greater than those welded after the TIG method. Moreover, linear 
energy is much smaller and welding rate is up to several times greater. All 
this has quite a favourable impact on deformations during welding, which 
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are usually negligibly small. Cooling rates in HAZ are greater and this 
should be accounted for in welding materials tending to form tempered 
structures. 
To protect the melted area from ambient temperature, additional protective 
gas is used – 99.95% Аr. It is fed concentrically between the copper nozzle 
and the gas nozzle. To prevent plasma jet expansion after its exiting the 
nozzle, additional focusing gas may be used.  
During welding of mild steels or low-alloy steels, carbon dioxide may be 
used as protective gas. On account of the relatively narrow heating area, the 
deviation of the burner (plasmatron) (Fig. 4) from the seam’s line should not 
exceed 10% of the welded thickness.  
 

 

Fig. 4 

 
The composition of the protective gas affects the penetration ability of the 
arc. The addition of hydrogen to argon increases the weld penetration depth. 
The optimal concentration is 7%. When using helium, the weld penetration 
depth is smaller compared to argon-hydrogen mixture. In contrast to the 
TIG process, during welding of stainless steels, the addition of 7.5% 
hydrogen to the protective gas does not cause formation of pores 
During plasma welding, butt seams with sheet material thickness of up to 
9.5mm may be implemented without flanging the ends and without using 
additional metal. With thickness of up to 25mm, V- or U–shaped flanging is 
required, whereas the flanging angle is smaller compared to the TIG 
process. The additional metal quantity is reduced up to three times. The 
process has greatest advantages in welding without flanging. During plasma 
welding, the additional metal is fed in the back part of the welding pool. The 
process may be used in all spatial applications and different mechanization 
levels. Among its various applications, it displays one of its greatest 
advantages in pipe welding. 
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Plasma–jet process with closed arc (indirect arc) 

The closed arc 5 (Fig. 5) burns inside the plasmatron between tungsten 
electrode 4 and water-cooled copper nozzle 7. Therefore, only a plasma jet 
exits the plasmatron. The plasma jet is characterized by a bright-glowing 
nucleus having a base a little less the size of the nozzle’s opening. The 
nucleus is surrounded by a torch with weaker light emission. The jet length 
is determined by the arc’s power, the nozzle’s diameter, and the gas 
capacity. In case of lamellar exit of the gas, the jet is long and actually, it 
does not mix with the surrounding environment. In case of turbulent exit of 
the gas, a short plasma jet is observed. By varying the nozzle’s form, the 
contour of the plasma jet may be preset, thus affecting the distribution of the 
jet’s thermal and power impact on the processed material. The temperature 
field in the jet is characterized by great radial and axial gradients, reaching 
temperatures of 32,0000С near the cathode. 
 

 
Fig. 5 

 
In engineering practice, plasma jet is characterized by the average mass 
temperature in the cross section coinciding with the nozzle’s butt plane. It 
may be determined by the relative enthalpy of plasma-forming gasз 

GqH /  (q is the effective arc power in this plane, J/s; G is the mass 
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capacity of plasma-forming gas, g/s. Table 1 contains the main parameters 
of the plasma jet for some gases used in practice. 
 

    Table 1 

Plasma-
forming 
gas 

Arc 
power, 
KW 

Gas 
capacity, 
g/s 

Internal 
coefficient of 
performance 
(COP) of the 
plasmatron 

Relative 
gas 
enthalpy, 
kcal/m3 

Average mass 
temperature of 
the plasma, К 

Nitrogen 0.5 60 9000 7350 

Hydrogen 0.1 80 4350 4075 

Air 50 7760 6925 

Argon 

25 

0.5 
40 8450 14100 

 

The main parameters regulating plasma jet thermal characteristics are: 
current magnitude, plasma-forming gas capacity, and arc length. Their 
impact on average mass temperature and jet power is shown in Fig. 6 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Impact of the main parameters of the mode: current magnitude I (l=30mm, 
Q=2.35m3/h, d=8mm), arc length l (I=200A, Q=2.35m3/h, d=8mm), argon 
capacity Q (I=200A, l=30mm, d=8mm), and nozzle diameter d (I=200A, 

Q=2.35m3/h, l=30mm) on average mass temperature Т and thermal power q 
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As a result of convective and radiation heat removal, the effective thermal 
power of the plasma jet qe is less than q. Increase of current magnitude and 
decrease of nozzle diameter result in its increase. When plasma-forming gas 
capacity is small, its increase results in sharp power increase, while with 
high capacity values its increase actually does not affect power. 

Increasing the distance between the nozzle and the heated plane decreases 
effective power as a result of the increased losses. Convective heat removal 
increases with turbulent jets. This explains the sharper reduction of effective 
power with increased capacity. In case of interaction of the plasma jet with a 
surface perpendicular to its axial axis, thermal flow distribution is close to 
normal (Fig. 7). 
 

 

 

 

Fig. 7. Impact of current magnitude (а), arc penetration into the nozzle (b), nozzle 
diameter (c), argon capacity (d), and distance between the nozzle and the 

workpiece (е) on thermal flow distribution 

 

The maximal density of the thermal flow (q2) may change from values 
equivalent to gas flame to values corresponding to a welding arc. It 
increases with increase of current and arc length and decrease of nozzle 
diameter. Apart from the thermal impact, plasma jet also has noticeable 
power impact on the processed material (Fig. 8). 

Plasma–jet–arc process with open and closed arc – combined process 

The plasma–jet–arc process is implemented by combining open and closed 
arc in the same plasmatron. Here, two separately regulated direct current 
sources are used (Fig. 9). One powers closed arc 5 between tungsten 
electrode 4 and copper nozzle 7, and the other powers open arc 8 between 
the electrode and the workpiece. In contrast to the open-arc plasmatron, in 
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this case both arcs burn simultaneously and continuously during the entire 
welding process. Thus, the closed arc stabilizes further the process and, 
together with the strongly compressive action of anode nozzle 7, it supports 
the stable burning of the open arc even at very low current magnitudes. 
Combined plasmatrons are suitable for both welding and surfacing. 
 

 

Fig. 8. Impact of the parameters on the pressure along the jet axis and the overall 
power impact (а – distance to nozzle b – current magnitude, с – arc penetration, d 

– argon capacity, е – nozzle diameter) 
 

 
 

 

Fig. 9 

The analysis of the publications in this field reveals numerous versions of 
the plasma welding and surfacing technological process: 
 using additional material: powder or wire; moreover, wires may be one 

or two, with solid or tubular cross-section; 
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 single-arc or double-arc, whereas the arc may burn on the workpiece or 
on the welding wire, while with the double-arc process one arc burns on 
the workpiece and the other one burns on the wire or on the canal of the 
plasma-forming nozzle; 

 the polarity of the direct-acting arc may alternate between direct and 
reverse, depending on the used electrode types; 

 usually, argon or argon-hydrogen mixture is used as both plasma-
forming and protective gas, but some combinations may be also used, 
such as: argon as plasma-forming gas, CO2 – as protective gas; 

 depending on the workpiece’s complexity and size, surfacing may be 
implemented manually or by a mechanized process; 

 mechanized surfacing may be implemented with no transverse 
oscillations or with oscillations of various trajectories; 

 high-speed plasma surfacing; 
 

Conclusion 
 

The current technology development level, the economic situation, the 
dynamically changing user needs and requirements impose the need of 
manufacturing or restoring complex and precise articles within increasingly 
short time limits and with reduced production costs. An essential trend in 
the economy of spare parts, raw materials, materials and energy is the 
introduction of competitive industrial technological processes. Pulse–arc 
plasma processes have significant potential to produce new high-quality 
articles, or to repair or restore old ones. 
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ИМПУЛСНО-ДЪГОВИ ПЛАЗМЕНИ ПРОЦЕСИ  
ЗА ЗАВАРЯВАНЕ И НАВАРЯВАНЕ 

 
Р. Димитрова, Б. Табакова 

 
Резюме 

Направен е кратък обзор по литературни данни на импулсно-
дъговите плазмени процеси за заваряване и наваряване. Разгледани са 
въпроси, свързани с оборудването и материалите, различните вариации 
на тези процеси, тяхното приложение, технологии за заваряване и 
наваряване, както и качеството на завареното изделие. 
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                                                                                                         News 
 

INFORMATION ABOUT THE START OF PROJECT TESTING 
PROBA-V AND VEGETATION DATA FOR AGRICULTURAL 

APPLICATIONS IN BULGARIA AND ROMANIA – 
PROAGROBURO 

 
Eugenia Roumenina, Gheorghe Stancalie, Valentin Kazandjiev 

 
The current VEGETATION 1 & 2 instruments onboard the French SPOT 4 
and SPOT 5 satellites will only be available until 2012. For more than 10 
years now, these instruments have monitored and mapped the worldwide 
vegetation every 10 days, thus providing essential information on crop 
yields, droughts, desertification, changes in the type of vegetation, 
deforestation, etc. to an ever extending user community. ESA is currently 
building the Sentinel 3 satellites in view of the European GMES 
programme. These satellites will contribute to the continuation of the 
availability of Vegetation type data but will not be operational in due time, 
thus creating a major time gap in the data continuity. Therefore, Belgium 
has decided to build a small satellite mission called PROBA-V ("V" 
standing for Vegetation). In that way, it will be a complement to the 
Sentinel 3 satellites to be launched after PROBA-V. While being designed 
as a continuity mission to the SPOT VEGETATION series, PROBA-V will 
provide some different characteristics, either through the technology used to 
collect data or through the enhancements in spatial resolution. The 
Preparatory Programme (http://eo.belspo.be) started in 2010 have two basic 
objectives: 

• to get future users acquainted with these new data sets and their full 
characteristics and quality,  

• to prepare the full exploitation of PROBA-V data sets with respect 
to the technical enhancements which are planned (spatial resolution in 
particular). 
Spanning a 1-year period, the "PROBA-V Preparatory Programme" is funded 
by the Belgian federal government and managed by the Belgian Federal 
Science Policy Office (BELSPO) and the Proba V International Users 
Committee. In 2010, a call was announced for research proposals in the 
context of the PROBA-V Preparatory Programme. A number of 12 projects 
were selected (http://probav-iuc.org), which started their work in 2010. One 
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of these projects is Testing PROBA-V and VEGETATION data for 
agricultural applications in Bulgaria and Romania – PROAGROBURO with 
implementation period between 02/12/2010 to 31/12/2011. 
(http://proagroburo.meteoromania.ro). 
The main objective of the project is to assess the quality of the PROBA-V 
mission as a continuity mission to VEGETATION 1 & 2 by comparison and 
validation of SPOT-VEGETATION and PROBA-V simulated data for 
assessing crop condition on chosen test areas for the territory of Bulgaria 
and Romania. This objective will be achieved by an interdisciplinary team 
of researchers from the two countries. The team comprises experts in remote 
sensing of the Earth and GIS technologies, as well as in agrometeorology 
and agro-forecasts. This team will be supported by the VITO SPS (System 
Performance Simulator) team which will provide a simulated PROBA-V 
dataset (http://www.vito.be) prepared based on hyperspectral EO-
1/Hyperion data and multispectral SPOT 5 data.  

Partners on (of) the PROAGROBURO Project are: 
The Space and Solar-Terrestrial Research Institute – Bulgarian 

Academy of Sciences (SSTRI–BAS) is responsible for the overall 
implementation of the Project. The Principal Investigator of the Project is 
Assoc. Prof. Dr. Eugenia Roumenina with Promoter from the Romanian 
National Meteorological Administration (RNMA) – Dr. Gheorghe Stancalie, 
and Promoter from the National Institute of Meteorology and Hydrology – 
Bulgarian Academy of Sciences (NIMH–BAS) – Assoc. Prof. Dr. Valentin 
Kazandjiev. 
The test areas in Bulgaria and Romania are chosen in the agricultural 
environments of Zhiten (Bulgaria), and Fundulea (Romania). Within each of 
them, a set of 4 test fields for field sampling will be chosen to perform the 
analysis and comparison of both spectroradiometers: SPOT VEGETATION 
and PROBA-V. The test area of Zhiten proposed for Bulgarian territory 
pertains to the Bulgarian Aero-Space Test Sites (BASTS). It is located in 
Dobrich Region, North-East Bulgaria, The test area on Romanian territory is 
located in Bargan Plain, South-East Romania. 

A methodology to validate simulated PROBA-V and SPOT-
VEGETATION data for agricultural applications will be developed. It will 
encompass three work tasks: building geodatabase; conducting sub-satellite 
experiments; and combined analysis of satellite and ground-based data. 
Three sub-satellite experiments for collecting meteorological data for each 
of the two test areas will evaluate and measure winter crop status during the 
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growing season. Common methodology will be applied on the two test areas 
to measure Fraction of Intercepted Photosynthetic Active Radiation 
(FIPAR), Leaf Area Index (LAI), soil moisture, canopy cover. Field data 
will be used to assess winter crop status by crop growth models (WOFOST 
and DSSAT). All field data and PROBA-V simulation images along with 
SPOT VEGETATION images for the growing season (2010–2011) will be 
organized in a geodatabase.  
As a result of the analysis, the relation between satellite data from the two 
sensors and the ground-assessed crop status and LAI will be determined and 
statistically explained. Achieving useful results is based on validation of 
both sensors with referent ground-based data under the same conditions. 
The applied methodology has the following expected deliverables: 
methodological requirements, designing a geodatabase with integrated 
satellite and in situ biophysical data, establishing correlations between 
ground-based observations and satellite spectral indices, validating PROBA-
V data, spatial statistics and pattern analysis of the simulated PROBA-V and 
SPOT VEGETATION derived indices and crop growth simulation and yield 
prediction. The project will also show the potentials of using 
VEGETATION type satellite data in addition to ground-based 
measurements and crop growth simulation models. The results are expected 
to aid the objective comparison of the two sensors, their performance and 
potential for combined usage in this application field. 

The implementation of the project will contribute to the PROBA-V 
Preparatory Programme by acquiring independent and objective ground-
based data that can be used to assess the quality of PROBA-V mission as a 
continuity mission to VEGETATION 1 & 2. The PROAGROBURO Project 
is dealing with one of the basic applications of the Vegetation instrument – 
agriculture, through which the VEGETATION 1 & 2 has gained respect 
among the user’s community. Thus, it is essential to make sure that the 
PROBA-V mission is challenging the issue with even better quality. The 
combined use of PROBA-V with SPOT VEGETATION data will help 
improve agricultural services and products for Romania and Bulgaria. The 
regular monitoring will also help cope with emergency situations in the field 
of food production. The project will benefit the PROBA-V mission by 
providing validating tools and algorithms suitable for PROBA-V data.After 
the Project’s implementation, on the selected test areas, ground-based and 
satellite data will continue to be collected on a regular basis, which might be 
included in the in situ component of the GMES and GEOSS Programmes. 
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New Books 
 

A NEW BOOK IN THE FIELD OF  
AEROSPACE RESEARCH AND TECHNOLOGIES 

 

In the end of 2011, the Prof. Marin Drinov Publishing 
House published the book Semi-Nature Construction of 
Unmanned Aircraft Control Systems, which is dedicated to 
an interesting topic, such as semi-nature construction of 
unmanned aircraft control systems. 
The author, Prof. Petar Getsov, Director of the Space 
Research and Technology Institute at the Bulgarian 
Academy of Sciences (SRTI–BAS), is an expert of wide 
popularity among aviation and space community, who 
works in the field of control systems and avionics of 
aerospace aircraft.  
The book provides a detailed and rationalized analysis of 

the modern state of unmanned aircraft, systematizing the spheres of their civil and 
military application, and proving their indispensability and prospects in complex 
aerospace experiments. General concept, methodology, and algorithms for semi-
nature construction and study of unmanned aircraft are developed. The problems of 
operator selection and training are considered based on unique formalization of 
their activities. The possibility for uniting in a common complex the control system 
and the navigation systems is examined. The book also focuses on the study of man 
as a control system within the unmanned aircraft control contour, as well as on the 
on-board microprocessor systems used for the purpose. In the end, construction and 
experimental solutions investigating unmanned aircraft flight control through 
analytical, semi-nature, and experimental methods are highlighted. 
The book contains 201 pages, 60 figures, and a reference of 237 titles. It is a 
further development of the habilitation work, defended successfully by the author 
to obtain the Professor scientific title.  
The book of Prof. Getsov, Semi-Nature Construction of Unmanned Aircraft 
Control Systems, will be used by civil or military engineers, or researchers in the 
field of construction and study of unmanned aircraft, as well as by all readers 
concerned in the problems of unmanned aircraft control systems and satellite 
navigation systems. 
The topic of the book, the discussed up-to-date problems, the high level of studies 
and quality of obtained results destine it to be a phenomenon on our book market in 
the field of aerospace research and technologies. 

Prof. Garo Mardirossian, DSc 
_____________________________________________________________ 

Г е ц о в, П. Полунатурно конструиране на системи за управление на безпилотни 
летателни апарати. Акад. Издат. “Проф. Марин Дринов”, София, 2011, 201 с. 
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A NEW BOOK ON NATURAL HAZARDS AND PROTECTION 
AGAINST THEM 

 
 

During the second half of 2011, the book Natural 
Hazards – Origin, Impact, Protection, academic 
issue of AVIT CONSULT, was published. The 
authors, Prof. Garo Mardirossian, DSc and Assoc. 
Prof. Dr. Boyko Ranguelov, from the Space Research 
and Technology Institute, and Prof. Atanas 
Bliznakov, DSc, from the New Bulgarian University, 
are widely known experts in the field of study and 
prevention of natural hazards and ecological 
catastrophes not only in Bulgaria, but also in abroad. 
The book is dedicated to a problem which is very 
topical both at home and throughout the world – the 

study of natural hazards, the negative impacts caused by them, and the 
prevention and protection against them. 
The phenomenology, origin, main characteristics, victims, and damages caused 
by natural ecological hazards are considered, which may hit with varying 
severity the territory of our country – earthquakes, floods, storms and 
hurricanes, tsunami, avalanches, thunders, forest fires, landslides, extreme 
temperatures, hailstorms and more. The available prevention and protection 
measures for these natural hazards are considered, both engineering and 
organizational, as well as individual, namely behaviour and action prior to, 
during, and after the ecological catastrophe. For obvious reasons, engineering 
measures are described only in brief. 
The figures, tables, and the coloured appendix, as well as the alphabetical index 
boost the better understanding of the topic and perceiving of the book. And the 
relatively voluminous reference allows the readers with specific interest in the 
topic to find more detailed information on the discussed phenomena and 
problems. 
The book is intended for a wide readers’ audience, but mostly for high school 
students. It may also be successfully used by primary school teachers to train 
the students how to protect themselves from natural hazards. 

 

         Prof. Radi Radichev 
 
 

Мардиросян, Г., Б. Рангелов, А. Близнаков. Природни бедствия – възникване, 
последици, защита. Академично издание на „АВИТ КОНСУЛТ”, София, 2011, 170 с., 
ISSN 978-954-92214-2-8. 
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NATURAL HAZARDS – NONLINEARITIES AND ASSESSMENT.  
NATURAL HAZARDS COMPLEXITIES, MULTIDISASTERS, 
METHODOLOGIES, RISK MAPPING, RISK MANAGEMENT, 

PREVENTION AND PROTECTION 
 
 

Geoscientists are developing and applying a wide 
range of methodologies to estimate volcanic and 
seismic (including tsunami) hazards. Although 
significant advances in site characterization and 
model development have been made in the last 
decade, many challenges remain. Several disastrous 
earthquakes in the past decade have required a rapid 
assessment of the underlying causes of the tragic 
loss of life and property. Earthquake risk reduction 
and control as a crucial criterion for sustainable 
development, minimizing social and economic loss 
and disruption due to earthquakes, requires reliable 

assessment of seismic hazard, vulnerability of the built environment and risk. 
All of these provide the critical basis for improved building codes and 
construction emergency response plans. The European practice needs such 
approaches due to the increased risk which is definitely dominated by the 
increased urbanization and the improved quality of life. Dr. Ranguelov is an 
active participant of several projects developed by the Space Research and 
Technology Institute of BAS. 
His book is devoted to natural hazard studies, where main attention is paid to 
the expression of the nonlinear properties and influences related to triggering, 
development and consequences of the natural hazards to environment and 
society.  
Several important issues are presented following the content of this book: 
- Fractal properties of the seismotectonic models of the Mediterranean and 

the Balkan Peninsula and their relationship with the main geological and 
tectonic structures can help to better understand and develop seismogenic 
models and achieve better practical results in implementing such approach 
in seismic hazard mapping. 

- It is suggested that primary and secondary damages follow a clear 
nonlinear pattern. This could be rather helpful when assessing and 
calculating these damages. 

- The deterministic approach using nonlinear functions to investigate human 
groups behaviour in extreme situations can help a lot in the everyday 
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management practice of the administrations in case of natural hazards 
occurrence. 

- The nonlinear elastic plate rebound in case of strong earthquakes is a rather 
new phenomenon established after the strong earthquakes in Sumatra 
(2004), Chile (2010) and Japan (2011) by the GPS measurements. It can 
provoke deeper geology and geophysics investigations to discover such 
effects during the past geological times, when geodynamics was much 
more active. 

- The complex risk assessment in case of multihazard simultaneous action of 
several hazards (for example earthquakes, tsunamis and landslides) is a big 
challenge to risk management practice and was developed in some models 
related to the Black Sea coast. 

- The concept of the destructive potential, limited space-time and temporal 
development of natural hazards could be helpful in damage assessment and 
the implementation of risk management preventive and protection 
measures. 

- The modern development of early warning systems as a promising tool for 
human life safety and society sustainability is essential. In case of great 
natural disasters (such as earthquakes, tsunamis, volcanic eruptions, etc.) 
these systems can protect and save human lives and preserve the 
environment. 

- The systematization and data base creation about different useful practices 
and measures against the negative impact of different natural hazards is the 
genuine way to mitigate their consequences. The cost-benefit analysis in 
every specific case can help decision makers a lot in the selection and 
implementation of the most effective measure in each individual case. 

The book is a useful tool for urban planners and the Civil Protection authorities 
and could be of interest not only to scientists, researches, students, but also to 
the wide public. 
     

  Dr. Zdenka Schenkova, Ph.D. 
Head of the Department of Geodynamics Institute of Rock 
Structure and Mechanics - Academy of Sciences of the Czech 
Republic 

 
 
 
 

Ranguelov, B. Natural Hazards – Nonlinearities and Assessment. Natural hazards 
complexities, multidisasters, methodologies, risk mapping, risk management, prevention 
and protection. Professor Marin Drinov Academic Publishing House, Bulgaria, 2011.  
ISBN 978-954-322-419-7  
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